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Outline

Unconstrained minimization
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Unconstrained minimization

minimize f(x)

» f:R" — R differentiable
> assume optimal value f* = inf, f(x) is attained (and finite)

> assume a starting point x(®) is known

unconstrained minimization methods

» produce sequence of points x(K), k= 0,1, ... with
f(xF)) — £~
(we hope)
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Solution of an optimization problem

minimize f(x)
for f:D—R. x*isa

» global minimizer if f(x) > f(x*) for all x € D.

» local minimizer if there is a neighborhood N around x* so
that f(x) > f(x*) for all x € N.

» isolated local minimizer if the neighborhood N contains
no other local minimizers.

» unique minimizer if it is the only global minimizer.
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for f:D—R. x*isa

» global minimizer if f(x) > f(x*) for all x € D.

» local minimizer if there is a neighborhood N around x* so
that f(x) > f(x*) for all x € N.

» isolated local minimizer if the neighborhood N contains
no other local minimizers.

» unique minimizer if it is the only global minimizer.

pictures!
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First order optimality condition

If x* € R" is a local minimizer of a differentiable function
f:R" = R, then Vf(x*) =0.
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First order optimality condition

Theorem

If x* € R" is a local minimizer of a differentiable function
f:R" = R, then Vf(x*) =0.

proof: suppose by contradiction that Vf(x*) # 0. consider
points of the form x, = x* — aVf(x*) for « > 0. by definition
of the gradient,

Jl“ow — V) V() = | VA2 < 0

so for any sufficiently small oo > 0, we have f(x,) < f(x*),
which contradicts the fact that x* is a local minimizer.
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Second order optimality condition

If x* € R" is a local minimizer of a twice differentiable function
f:R" — R, then V?f(x*) = 0.
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Second order optimality condition

Theorem

If x* € R" is a local minimizer of a twice differentiable function
f:R" — R, then V?f(x*) = 0.

proof: similar to the previous proof. use the fact that the
second order approximation

1

f(xa) = f(X*)+Vf(X*)T(Xa—X*)+2

(X0 —x*) T V2 (x*) (Xa—X*)
is accurate locally to show a contradiction unless V2f(x*) = 0:
if not, there is a direction v such that v’ V2f(x*)v < 0. then
f(x 4+ av) < f(x*) for « arbitrarily small, which contradicts the
fact that x* is a local minimizer.
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Gradient descent

minimize  f(x)

idea: go downbhill

Algorithm Gradient descent

Given: f : RY — R, stepsize t, maxiters
Initialize: x = 0 (or anything you'd like)
For: kK =1,... maxiters
» update x:
X < x — tVf(x)
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Gradient descent: choosing a step-size

> constant step-size. t(K) = t (constant)
> decreasing step-size. t(K) =1/k

> line search. try different possibilities for t(K) until objective
at new iterate

(xR = F(x(k=1) — £ (x(k1)))
decreases enough.

tradeoff: line search requires evaluating f(x) (can be expensive)
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Line search

define xT = x — tVf(x)

> exact line search: find t to minimize f(x™)

» the Armijo rule requires t to satisfy
F(xT) < F(x) — ct| VF(x)|

for some c € (0,1), e.g,, c = .01.
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Line search

define xT = x — tVf(x)

> exact line search: find t to minimize f(x™)

» the Armijo rule requires t to satisfy
F(x) < F(x) = ctl| V()|
for some ¢ € (0,1), e.g., c = .01.
a simple backtracking line search algorithm:
> sett=1
> if step decreases objective value sufficiently, accept x™:
f(xT) < f(x) = ct||VFX)|? = x+«x*

otherwise, halve the stepsize t < t/2 and try again
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Demo: gradient descent

https://github.com /stanford-cme-307 /demos/blob/main/
gradient-descent.ipynb
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https://github.com/stanford-cme-307/demos/blob/main/gradient-descent.ipynb
https://github.com/stanford-cme-307/demos/blob/main/gradient-descent.ipynb

Outline

What functions?
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How well does GD work?

for x € R,
> f(x)=x"x
> f(x) =xTAxfor A= 0
» f(x) = |/x]]1 (nonsmooth but differentiable almost
everywhere)

» f(x) =1/x on x > 0 (strictly convex but not strongly
convex)

https://github.com /stanford-cme-307 /demos/blob/main/
gradient-descent-contours.ipynb
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https://github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb
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First-order condition

x* € R" is a stationary point of a differentiable function
f:R" = Rif Vf(x*)=0.
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First-order condition

Definition
x* € R" is a stationary point of a differentiable function
f:R" = Rif Vf(x*)=0.

Q: Can a global minimum have a non-zero gradient?
A: No.

Q: Is a stationary point always a global minimum?
A: No.

Q: ... for convex functions?

A: Yes.

Vf(x*) = 0 is the first-order (necessary) condition for
optimality.
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Invex function

Definition

A function f : R” — R is invex if for some vector-valued
function n : R" x R" — R",

f(x) — f(u) > n(x,u)'VFf(u) VYueR", xedomf

Theorem (Craven and Glover, Ben-Israel and Mond)

A function is invex iff every stationary point is a global
minimum.
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Quadratic approximation

Suppose f : R — R is twice differentiable. For any x € R,
approximate f about x:

F(y) % FO)+ VAT =) 4 5y = 20T 2Ry — ).

If f is a quadratic function, V2f(x) = H is constant.
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approximate f about x:

F(y) % FO)+ VAT =) 4 5y = 20T 2Ry — ).

If f is a quadratic function, V2f(x) = H is constant.
Quadratic approximations are useful because quadratics are easy

to minimize:

o= argmin F(x)+ V) (y = x) + %(y —x)TH(y — x)

= VI(x)+H(y —x)=0
y* = x—HYVF(X)).
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Quadratic approximation

Suppose f : R — R is twice differentiable. For any x € R,
approximate f about x:

F(y) % FO)+ VAT =) 4 5y = 20T 2Ry — ).

If f is a quadratic function, V2f(x) = H is constant.
Quadratic approximations are useful because quadratics are easy
to minimize:

o= argmin F(x)+ V) (y = x) + %(y —x)TH(y — x)

= VI(x)+H(y —x)=0
y* = x—HYVF(X)).

If we approximate the Hessian of f by H = %I for some t >0
and choose x™ to minimize the quadratic approximation, we
obtain the gradient descent update with step size t:

xT =x+ —tVf(x)
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Quadratic upper bound

Definition (Smooth)
A function f : R — R is L-smooth if for all x,y € R,

F(y) < £+ VA)T(y =) + 5 lly = xI

Equivalently, assuming the derivatives exist,
» the operator %Vf is L-Lipschitz continuous:
IVE(y) = VIl < Llly — x|

» V2f(x) < LI for all x € domf.
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L
F(y) < F(x) + V)T (y —x) + Slly = x||2.
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Quadratic lower bound

Definition (Strongly convex)
A function f : R — R is u-strongly convex if for all x,y € R,

I
f(y) 2 F(x) + V) T(y = x) + S lly = xII*.
Equivalently, assuming the derivatives exist,
» the operator ;%Vf is u-coercive:
IVF(y) = VIOl = plly — x|

> V2f(x) = ul for all x € domf.
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Quadratic lower bound

Definition (Strongly convex)
A function f : R — R is u-strongly convex if for all x,y € R,

F(y) 2 F() + VFG)T(y —x) + Slly = x|
Equivalently, assuming the derivatives exist,
» the operator ;%Vf is u-coercive:
IVE(y) = V) = plly = x|
> V2f(x) = ul for all x € domf.

Q: For A = 0, the quadratic function f(x) = 1xT Ax is
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Optimizing the upper bound

start at x(9). suppose f is L-smooth, so for all y € R,
L
f(y) < F(XO)+VF) T (y —x9) + Slly = xO)12
let's choose next iterate x(1) to minimize this upper bound:

x1 = argmin f(x) + Vf(X)T(y —x)+ é”y — x||2
y

— VFx©) 4+ L(x® = x©) =0
LU 0 %Vf(x(o))
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Optimizing the upper bound

start at x(9). suppose f is L-smooth, so for all y € R,
L
f(y) < F(XO)+VF) T (y —x9) + Slly = x©))12
let's choose next iterate x(1) to minimize this upper bound:

x1 = argmin f(x) + Vf(X)T(y —x)+ é”y — x||2
y

— VFx©) 4+ L(x® = x©) =0
LU 0 %Vf(x(o))

» gradient descent update with step size t = %

» lower bound ensures true optimum can’t be too far away. ..
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Outline

Analysis via Polyak-Lojasiewicz condition
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Some important functions

for Ac R™" b R™ x€R",

» Quadratic loss. ||Ax — b||?
> Logistic loss. f(x) =3 " log(1+ exp (b,-aiTx))
where a; is ith row of A
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Some important functions

for Ac R™" b R™ x€R",

» Quadratic loss. ||Ax — b||?
> Logistic loss. f(x) =3 " log(1+ exp (b,-aiTx))
where a; is ith row of A

Q: Which of these are smooth? Under what conditions?

A: Both.

Q: Which of these are strongly convex? Under what conditions?
A: Quadratic loss is strongly convex if A is rank n. Logistic loss
is strongly convex on a compact domain if A is rank n.
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The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R — R satisfies the Polyak-Lojasiewicz
condition if

SIVFRIR 2 w(F(x) — )
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The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R — R satisfies the Polyak-Lojasiewicz
condition if

SIVFRIR 2 w(F(x) — )

Theorem

Suppose f(x) = g(Ax) where g : R™ — R is strongly convex
and A: R" — R™ is linear. Then f is Polyak-Lojasiewicz.
source: [Karimi, Nutini, and Schmidt (. )]

so logistic loss (on a compact set) and quadratic loss are
Polyak-Lojasiewicz even when m < n

Q: Are all Polyak-Lojasiewicz functions convex?

A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker
than strong convexity and yields simpler proofs
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PL and invexity

Theorem

Every Polyak-Lojasiewicz function is invex. (That is, any
stationary point of a Polyak-Lojasiewicz function is globally
optimal.)
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PL and invexity

Theorem

Every Polyak-Lojasiewicz function is invex. (That is, any
stationary point of a Polyak-Lojasiewicz function is globally
optimal.)
proof: if Vf(x) =0, then
1
0= SlIVFC)I® = u(f (%) — ) 2 0

= f(X) = f* is the global optimum.
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strong convexity —- Polyak-Lojasiewicz

If f is p-strongly convex, then f is u-Polyak-Lojasiewicz.
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strong convexity —- Polyak-Lojasiewicz

Theorem

If f is p-strongly convex, then f is u-Polyak-Lojasiewicz.

proof: minimize the strong convexity condition over y:
. . T H 2
minf(y) = min (F(x) + VF)T(y =) + Slly = xI?)

1
fro = f(x) - ﬂlly — x|

24/30



Types of convergence

» objective converges
F(xW) — £

» iterates converge

x5 x*

under

» strong convexity: objective converges —> iterates
converge

proof: use strong convexity with x = x* and y = x(k):
F) = £ = B0 |2

» Polyak-Lojasiewicz: not necessarily true (x* may not be
unique)
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Rates of convergence

» linear convergence with rate ¢

F(x0)) — £ < K(F(x) — %)

» looks like a line on a semi-log plot
P> example: gradient descent on smooth strongly convex
function

» sublinear convergence

> looks slower than a line (curves up) on a semi-log plot
> example: 1/k convergence

F(xW) — F* < O(1/k)

P> example: gradient descent on smooth convex function
» example: stochastic gradient descent
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Gradient descent converges linearly

Theorem

If f : R" — R is u-Polyak-Lojasiewicz, L-smooth, and
x* = argmin, f(x) exists, then gradient descent with stepsize L

1) (k) _ %w(x(m)

converges linearly to f* with rate (1 — ).
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Gradient descent converges linearly: proof

proof: plug in update rule to L-smoothness condition

F) — (W) < w<x<k) (D 9 - Sl

< (-1 4 IVA)
—ﬁuvax )P

A

< —%(f(x(k)) — f*) > (using PL)
decrement proportional to error = linear convergence:

F(xF)y — £

IN

(1- %)(f(x“-”) — )
S RN GERIE)
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Practical convergence

» Gradient descent with optimal stepsize converges even
faster.

F(xDY = inf £(x) — aVF(x(R)) < F(xK) — %Vf(x(k)))
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Practical convergence

» Gradient descent with optimal stepsize converges even
faster.

F(xDY = inf £(x) — aVF(x(R)) < F(xK) — %Vf(x(k)))

» Local vs global convergence
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Quiz

» A strongly convex function always satisfies the
Polyak-Lojasiewicz condition
A. true
B. false

» Suppose f : R — R is L-smooth and satisfies the
Polyak-Lojasiewicz condition. Then any stationary point
Vif(x) =0 of fis a global optimum:

f(x) = argmin,, f(y) =: f*.
A. true
B. false

» Suppose f : R — R is L-smooth and satisfies the
Polyak-Lojasiewicz condition. Then gradient descent on f
converges linearly from any starting point.

A. true
B. false
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