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Analysis via Polyak-Lojasiewicz condition

2 / 30



Unconstrained minimization

minimize f (x)

▶ f : Rn → R differentiable

▶ assume optimal value f ⋆ = infx f (x) is attained (and finite)

▶ assume a starting point x (0) is known

unconstrained minimization methods

▶ produce sequence of points x (k), k = 0, 1, . . . with

f (x (k))→ f ⋆

(we hope)
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Solution of an optimization problem

minimize f (x)

for f : D → R. x⋆ is a

▶ global minimizer if f (x) ≥ f (x⋆) for all x ∈ D.
▶ local minimizer if there is a neighborhood N around x⋆ so

that f (x) ≥ f (x⋆) for all x ∈ N .

▶ isolated local minimizer if the neighborhood N contains
no other local minimizers.

▶ unique minimizer if it is the only global minimizer.

pictures!
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First order optimality condition

Theorem

If x⋆ ∈ Rn is a local minimizer of a differentiable function
f : Rn → R, then ∇f (x⋆) = 0.

proof: suppose by contradiction that ∇f (x⋆) ̸= 0. consider
points of the form xα = x⋆ − α∇f (x⋆) for α > 0. by definition
of the gradient,

lim
α→0

f (xα)− f (x⋆)

α
= −∇f (x⋆)⊤∇f (x⋆) = −∥∇f (x⋆)∥2 < 0

so for any sufficiently small α > 0, we have f (xα) < f (x⋆),
which contradicts the fact that x⋆ is a local minimizer.
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Second order optimality condition

Theorem

If x⋆ ∈ Rn is a local minimizer of a twice differentiable function
f : Rn → R, then ∇2f (x⋆) ⪰ 0.

proof: similar to the previous proof. use the fact that the
second order approximation

f (xα) ≈ f (x⋆)+∇f (x⋆)⊤(xα−x⋆)+
1

2
(xα−x⋆)⊤∇2f (x⋆)(xα−x⋆)

is accurate locally to show a contradiction unless ∇2f (x⋆) ⪰ 0:
if not, there is a direction v such that vT∇2f (x⋆)v < 0. then
f (x + αv) < f (x⋆) for α arbitrarily small, which contradicts the
fact that x⋆ is a local minimizer.
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Gradient descent

minimize f (x)

idea: go downhill

Algorithm Gradient descent

Given: f : Rd → R, stepsize t, maxiters
Initialize: x = 0 (or anything you’d like)
For: k = 1, . . . ,maxiters

▶ update x :
x ← x − t∇f (x)
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Gradient descent: choosing a step-size

▶ constant step-size. t(k) = t (constant)

▶ decreasing step-size. t(k) = 1/k

▶ line search. try different possibilities for t(k) until objective
at new iterate

f (x (k)) = f (x (k−1) − t(k)∇f (x (k−1)))

decreases enough.

tradeoff: line search requires evaluating f (x) (can be expensive)
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Line search

define x+ = x − t∇f (x)

▶ exact line search: find t to minimize f (x+)

▶ the Armijo rule requires t to satisfy

f (x+) ≤ f (x)− ct∥∇f (x)∥2

for some c ∈ (0, 1), e.g., c = .01.

a simple backtracking line search algorithm:

▶ set t = 1

▶ if step decreases objective value sufficiently, accept x+:

f (x+) ≤ f (x)− ct∥∇f (x)∥2 =⇒ x ← x+

otherwise, halve the stepsize t ← t/2 and try again
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Demo: gradient descent

https://github.com/stanford-cme-307/demos/blob/main/
gradient-descent.ipynb
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How well does GD work?

for x ∈ Rn,

▶ f (x) = xT x

▶ f (x) = xTAx for A ⪰ 0

▶ f (x) = ∥x∥1 (nonsmooth but differentiable almost
everywhere)

▶ f (x) = 1/x on x > 0 (strictly convex but not strongly
convex)

https://github.com/stanford-cme-307/demos/blob/main/
gradient-descent-contours.ipynb
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First-order condition

Definition

x⋆ ∈ Rn is a stationary point of a differentiable function
f : Rn → R if ∇f (x⋆) = 0.

Q: Can a global minimum have a non-zero gradient?
A: No.
Q: Is a stationary point always a global minimum?
A: No.
Q: . . . for convex functions?
A: Yes.

∇f (x⋆) = 0 is the first-order (necessary) condition for
optimality.
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Invex function

Definition

A function f : Rn → R is invex if for some vector-valued
function η : Rn × Rn → Rn,

f (x)− f (u) ≥ η(x , u)⊤∇f (u) ∀u ∈ Rn, x ∈ dom f

Theorem (Craven and Glover, Ben-Israel and Mond)

A function is invex iff every stationary point is a global
minimum.
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Quadratic approximation

Suppose f : R→ R is twice differentiable. For any x ∈ R,
approximate f about x :

f (y) ≈ f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (x)(y − x).

If f is a quadratic function, ∇2f (x) = H is constant.

Quadratic approximations are useful because quadratics are easy
to minimize:

y⋆ = argmin
y

f (x) +∇f (x)T (y − x) +
1

2
(y − x)TH(y − x)

=⇒ ∇f (x) + H(y⋆ − x) = 0

y⋆ = x − H−1(∇f (x)).

If we approximate the Hessian of f by H = 1
t I for some t > 0

and choose x+ to minimize the quadratic approximation, we
obtain the gradient descent update with step size t:

x+ = x +−t∇f (x)

16 / 30



Quadratic approximation

Suppose f : R→ R is twice differentiable. For any x ∈ R,
approximate f about x :

f (y) ≈ f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (x)(y − x).

If f is a quadratic function, ∇2f (x) = H is constant.

Quadratic approximations are useful because quadratics are easy
to minimize:

y⋆ = argmin
y

f (x) +∇f (x)T (y − x) +
1

2
(y − x)TH(y − x)

=⇒ ∇f (x) + H(y⋆ − x) = 0

y⋆ = x − H−1(∇f (x)).

If we approximate the Hessian of f by H = 1
t I for some t > 0

and choose x+ to minimize the quadratic approximation, we
obtain the gradient descent update with step size t:

x+ = x +−t∇f (x)

16 / 30



Quadratic approximation

Suppose f : R→ R is twice differentiable. For any x ∈ R,
approximate f about x :

f (y) ≈ f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (x)(y − x).

If f is a quadratic function, ∇2f (x) = H is constant.

Quadratic approximations are useful because quadratics are easy
to minimize:

y⋆ = argmin
y

f (x) +∇f (x)T (y − x) +
1

2
(y − x)TH(y − x)

=⇒ ∇f (x) + H(y⋆ − x) = 0

y⋆ = x − H−1(∇f (x)).

If we approximate the Hessian of f by H = 1
t I for some t > 0

and choose x+ to minimize the quadratic approximation, we
obtain the gradient descent update with step size t:

x+ = x +−t∇f (x)
16 / 30



Quadratic upper bound

Definition (Smooth)

A function f : R→ R is L-smooth if for all x , y ∈ R,

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
∥y − x∥2.

Equivalently, assuming the derivatives exist,

▶ the operator 1
L∇f is L-Lipschitz continuous:

∥∇f (y)−∇f (x)∥ ≤ L∥y − x∥

▶ ∇2f (x) ⪯ LI for all x ∈ dom f .

Q: For A ⪰ 0, the quadratic function f (x) = 1
2x

TAx is
?-smooth
A: λmax(A)-smooth
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Quadratic lower bound

Definition (Strongly convex)

A function f : R→ R is µ-strongly convex if for all x , y ∈ R,

f (y) ≥ f (x) +∇f (x)T (y − x) +
µ

2
∥y − x∥2.

Equivalently, assuming the derivatives exist,

▶ the operator 1
µ∇f is µ-coercive:

∥∇f (y)−∇f (x)∥ ≥ µ∥y − x∥

▶ ∇2f (x) ⪰ µI for all x ∈ dom f .

Q: For A ⪰ 0, the quadratic function f (x) = 1
2x

TAx is
?-strongly convex
A: λmin(A)-strongly convex
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Optimizing the upper bound

start at x (0). suppose f is L-smooth, so for all y ∈ R,

f (y) ≤ f (x (0)) +∇f (x)T (y − x (0)) +
L

2
∥y − x (0)∥2

let’s choose next iterate x (1) to minimize this upper bound:

x (1) = argmin
y

f (x) +∇f (x)T (y − x) +
L

2
∥y − x∥2

=⇒ ∇f (x (0)) + L(x (1) − x (0)) = 0

x (1) = x (0) − 1

L
∇f (x (0))

▶ gradient descent update with step size t = 1
L

▶ lower bound ensures true optimum can’t be too far away. . .
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Some important functions

for A ∈ Rm×n, b ∈ Rm, x ∈ Rn,

▶ Quadratic loss. ∥Ax − b∥2

▶ Logistic loss. f (x) =
∑m

i=1 log(1 + exp
(
bia

T
i x

)
)

where ai is ith row of A

Q: Which of these are smooth? Under what conditions?
A: Both.
Q: Which of these are strongly convex? Under what conditions?
A: Quadratic loss is strongly convex if A is rank n. Logistic loss
is strongly convex on a compact domain if A is rank n.
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The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R→ R satisfies the Polyak-Lojasiewicz
condition if

1

2
∥∇f (x)∥2 ≥ µ(f (x)− f ⋆)

Theorem

Suppose f (x) = g(Ax) where g : Rm → R is strongly convex
and A : Rn → Rm is linear. Then f is Polyak-Lojasiewicz.
source: [Karimi, Nutini, and Schmidt (2016)]

so logistic loss (on a compact set) and quadratic loss are
Polyak-Lojasiewicz even when m < n

Q: Are all Polyak-Lojasiewicz functions convex?
A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker
than strong convexity and yields simpler proofs
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than strong convexity and yields simpler proofs
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PL and invexity

Theorem

Every Polyak-Lojasiewicz function is invex. (That is, any
stationary point of a Polyak-Lojasiewicz function is globally
optimal.)

proof: if ∇f (x̄) = 0, then

0 =
1

2
∥∇f (x)∥2 ≥ µ(f (x̄)− f ⋆) ≥ 0

=⇒ f (x̄) = f ⋆ is the global optimum.

23 / 30



PL and invexity

Theorem

Every Polyak-Lojasiewicz function is invex. (That is, any
stationary point of a Polyak-Lojasiewicz function is globally
optimal.)

proof: if ∇f (x̄) = 0, then

0 =
1

2
∥∇f (x)∥2 ≥ µ(f (x̄)− f ⋆) ≥ 0

=⇒ f (x̄) = f ⋆ is the global optimum.

23 / 30



strong convexity =⇒ Polyak-Lojasiewicz

Theorem

If f is µ-strongly convex, then f is µ-Polyak-Lojasiewicz.

proof: minimize the strong convexity condition over y :

min
y

f (y) ≥ min
y

(
f (x) +∇f (x)T (y − x) +

µ

2
∥y − x∥2

)
f ⋆ ≥ f (x)− 1

2µ
∥y − x∥2
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Types of convergence

▶ objective converges

f (x (k))→ f ⋆

▶ iterates converge
x (k) → x⋆

under

▶ strong convexity: objective converges =⇒ iterates
converge
proof: use strong convexity with x = x⋆ and y = x (k):

f (x (k))− f ⋆ ≥ µ

2
∥x (k) − x⋆∥2

▶ Polyak-Lojasiewicz: not necessarily true (x⋆ may not be
unique)
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Rates of convergence

▶ linear convergence with rate c

f (x (k))− f ⋆ ≤ ck(f (x (0))− f ⋆)

▶ looks like a line on a semi-log plot
▶ example: gradient descent on smooth strongly convex

function

▶ sublinear convergence
▶ looks slower than a line (curves up) on a semi-log plot
▶ example: 1/k convergence

f (x (k))− f ⋆ ≤ O(1/k)

▶ example: gradient descent on smooth convex function
▶ example: stochastic gradient descent
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Gradient descent converges linearly

Theorem

If f : Rn → R is µ-Polyak-Lojasiewicz, L-smooth, and
x⋆ = argminx f (x) exists, then gradient descent with stepsize L

x (k+1) = x (k) − 1

L
∇f (x (k))

converges linearly to f ⋆ with rate (1− µ
L ).
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Gradient descent converges linearly: proof

proof: plug in update rule to L-smoothness condition

f (x (k+1))− f (x (k)) ≤ ∇f (x (k))T (x (k+1) − x (k)) +
L

2
∥x (k+1) − x (k)∥2

≤ (−1

L
+

1

2L
)∥∇f (x (k))∥2

≤ − 1

2L
∥∇f (x (k))∥2

≤ −µ

L
(f (x (k))− f ⋆)▷ (using PL)

decrement proportional to error =⇒ linear convergence:

f (x (k))− f ⋆ ≤ (1− µ

L
)(f (x (k−1))− f ⋆)

≤ (1− µ

L
)k(f (x (0))− f ⋆)
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Practical convergence

▶ Gradient descent with optimal stepsize converges even
faster.

f (x (k+1)) = inf
α
f (x (k)−α∇f (x (k))) ≤ f (x (k)− 1

L
∇f (x (k)))

▶ Local vs global convergence
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Quiz

▶ A strongly convex function always satisfies the
Polyak-Lojasiewicz condition

A. true
B. false

▶ Suppose f : R→ R is L-smooth and satisfies the
Polyak-Lojasiewicz condition. Then any stationary point
∇f (x) = 0 of f is a global optimum:
f (x) = argminy f (y) =: f ⋆.

A. true
B. false

▶ Suppose f : R→ R is L-smooth and satisfies the
Polyak-Lojasiewicz condition. Then gradient descent on f
converges linearly from any starting point.

A. true
B. false
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