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Announcements

▶ lectures slides on website:
https://stanford-cme-307.github.io/website-2023/calendar

▶ recordings posted on canvas

▶ office hours posted on website:
https://stanford-cme-307.github.io/website-2023/staff
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What topics and why?

Grading

Quadratic optimization

Nonlinear optimization

Conic optimization

Integer programming

Convex optimization

Who’s here?
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What is an optimization problem?

optimization problem: nonlinear form

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m1

hi (x) = 0, i = 1, . . . ,m2

variable x ∈ Rn

▶ objective f0
▶ inequality constraints fi
▶ equality constraints hi
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Modularity in optimization

how to optimize:

1. model problem as a mathematical optimization problem

2. identify the properties of the problem

3. use an appropriate solver (or write a new one)

. . . and iterate:

▶ approximate the problem to make it easier

▶ solve a sequence of approximated problems that converge
to solve the original problem

▶ or initialize (“warm-start”) a solver for the original problem
with a solution to the approximated problem
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How will you use optimization?

▶ model problem to match solver capabilities

▶ use solvers as building blocks in larger algorithms

▶ write your own solver for a new problem class

▶ write a specialized solver for a particular problem
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What will you need to know to use (or develop)

optimization?

▶ convexity

▶ geometry

▶ numerical stability

▶ complexity

▶ reliability

▶ stopping conditions
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Optimization courses

compared to

▶ EE364a: more algos, less modeling

▶ EE364b: more nonconvex, different mix of algos

▶ . . .

my goal: < 30% overlap with either
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Topics

let’s look at topics on google sheets:
https://docs.google.com/spreadsheets/d/
1PXv sFkhz5jNAA765kgHanSPoILm2fHzzRNuOOJzpHM

▶ what other topics should we add?
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Grading

let’s look at the course website:
https://stanford-cme-307.github.io/website-2023/

▶ for PhD students, the grading is designed to help (not
distract from) your research

▶ for UG/Masters, this course may push you hard. . .
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Optimization problems

important optimization problem classes:

▶ quadratic

▶ unconstrained

▶ finite-sum

▶ linear

▶ conic

▶ convex

▶ nonlinear (with linear or nonlinear constraints)

▶ mixed-integer linear programs

▶ black-box with (0, 1, or 2)-order oracle
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Quadratic optimization

a quadratic optimization problem is written as

minimize 1
2∥Ax − b∥2 := f0(x)

variable x ∈ Rn

where

▶ A ∈ Rm×n: matrix

▶ b ∈ Rm: vector

how to solve?

take gradient and set to 0:

∇f0(x) = AT (Ax − b) = 0

=⇒ linear system solvers also solve quadratic optimization
problems
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Linear algebra review

matrix A ∈ Rm×n

▶ check matrix calculus results by checking dimensions

▶ normal equations ATAx = ATb

▶ solution to Ax = b is unique if m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension

n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of

V ∈ Rn×n−m span nullspace(A)

▶ ATA is symmetric positive semidefinite (proof on board)
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Symmetric positive semidefinite matrices

Definition

a symmetric matrix Q ∈ Rn×n is positive semidefinite (psd) if
xTQx ≥ 0 for all x ∈ Rn.

these matrices are so important that there are many ways to
write them! for Q ∈ Rn×n,

Q ∈ Sn
+ ⇐⇒ Q ⪰ 0 ⇐⇒ Q = QT , λmin(Q) ≥ 0

Q ∈ Sn
+ is symmetric positive definite (spd) (Q ≻ 0) if

xTQx > 0 for all x ∈ Rn.

why care about psd matrices Q?

▶ least-squares objective has a psd Q = ATA
▶ level sets of xTQx are (bounded) ellipsoids
▶ the quadratic form xTQx is a metric iff Q ≻ 0
▶ eigenvalue decomp and svd coincide for psd matrices
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Quadratic program

a quadratic program is written as

minimize 1
2x

TQx + cT x
subject to Ax = b
variable x ∈ Rn

where

▶ Q ∈ Rn×n: symmetric positive semidefinite matrix

▶ c ∈ Rn: vector

how to solve?

reduce to quadratic optimization problem:

▶ (explicit) form solution set
{x : Ax = b} = {x0 + Vz | z ∈ Rn−m} by computing a
solution Ax0 = b and a basis V for the null space of A

▶ (implicit) use duality to recast problem as larger linear
(KKT) system
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Quadratic program: application

Markowitz portfolio optimization problem:

minimize γxTΣx − µT x
subject to

∑
i xi = 1

Ax = 0
variable x ∈ Rn

where

▶ Σ ∈ Rn×n: asset covariance matrix

▶ µ ∈ Rn: asset return vector

▶ γ ∈ R: risk aversion parameter
▶ rows of A ∈ Rm×n correspond to other portfolios

▶ ensures new portfolio is independent, e.g., of market returns
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Unconstrained smooth optimization

for f : Rn → R ctsly differentiable,

minimize f (x)
variable x ∈ Rn

how to solve?

approximate as a quadratic problem

f (x) ≈ f (x0) +∇f (x0)T (x − x0) +
1

2
(x − x0)

TH(x0)(x − x0)

and find solution xquad to the quadratic problem.
then set x0 ← xquad and repeat.
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Finite sum

finite sum optimization problem

minimize
∑m

i=1 fi (x)
variable x ∈ Rn

key fact: can approximate gradient using gradient on
minibatch S ⊆ {1, . . . ,m}:

∇f (x) ≈ 1

|S |
∑
i∈S
∇fi (x)

examples:

▶ statistical learning (logistic regression, SVM)

▶ deep learning
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Background: classification

classification problem: m data points

▶ feature vector aiR
n, i = 1, . . . ,m

▶ label bi ∈ {−1, 1}, i = 1, . . . ,m

choose decision boundary aT x = 0 to separate data points into
two classes

▶ aT x > 0 =⇒ predict class 1

▶ aT x < 0 =⇒ predict class -1

classification is correct if bia
T x > 0

▶ projective transformation transforms affine boundary to
linear boundary

▶ classification is invariant to scalar multiplication of x
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Logistic regression

(regularized) logistic regression minimizes the finite sum

minimize
∑m

i=1 log(1 + exp
(
−biaTi x

)
) + r(x)

variable x ∈ Rn

where

▶ bi ∈ {−1, 1}, ai ∈ Rn

▶ r : Rn → R is a regularizer, e.g., ∥x∥2 or ∥x∥1
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Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize
∑m

i=1max(0, 1− bia
T
i x) + γ∥x∥2

variable x ∈ Rn

where bi ∈ {−1, 1} and ai ∈ Rn.

not differentiable!

how to solve?

▶ use subgradient method

▶ transform to conic form

▶ solve dual problem instead

▶ smooth the objective
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Nonlinear optimization

optimization problem: nonlinear form

minimize f0(x)
subject to fi (x) ≤ bi , i = 1, . . . ,m1

h(x) = 0
variable x ∈ Rn

▶ x = (x1, . . . , xn): optimization variables

▶ f0 : R
n → R: objective function

▶ fi : R
n → R, i = 1, . . . ,m: constraint functions

special case: unconstrained optimization
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Example: process control

You are the process engineer for a desalination plant that
produces drinking water. The plant has a variety of knobs,
collected in vector x , that you can turn to control the process.
These control, e.g., how much water is pumped into the plant,
how much pressure is used to force the water through filters,
and how much of each chemical is added to the water.

▶ f0(x): cost of water produced

▶ fi (x): level of each measured impurity in the water

▶ bi : maximum allowable level of each impurity

Given a setting of the knobs, you can observe the cost of water
produced and the levels of impurities.

What is the optimal setting of the knobs?
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Oracles

an optimization oracle is your interface for accessing the
problem data:
e.g., an oracle for f : Rn → R can evaluate for any x ∈ Rn:

▶ zero-order: f0(x)

▶ first-order: f0(x) and ∇f0(x)
▶ second-order: f0(x), ∇f0(x), and ∇2f0(x)

why oracles?

▶ can optimize real systems based on observed output (not
just models)

▶ can use and extend old or complex but trusted code (e.g.,
NASA, PDE simulations, . . . )

▶ can prove lower bounds on the oracle complexity of a
problem class

source: Nesterov 2004 “Introductory Lectures on Convex Optimization”’
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Nonlinear optimization: how to solve?

depends on the oracle:

▶ first- or second-order: approximate by a sequence of
quadratic problems

▶ zero-order: harder, lots of methods
▶ simulated annealing
▶ Bayesian optimization
▶ pseudo-higher-order methods, e.g., compute approximate

gradient
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Solution of an optimization problem

minimize f (x)

for f : D → R. x⋆ is a

▶ local minimizer if there is a neighborhood N around x⋆ so
that f (x) ≥ f (x⋆) for all x ∈ N .

▶ global minimizer if f (x) ≥ f (x⋆) for all x ∈ D.
▶ strict local minimizer if there is a neighborhood N around

x⋆ so that f (x) > f (x⋆) for all x ∈ N .

▶ isolated local minimizer if the neighborhood N contains
no other local minimizers.

▶ unique minimizer if it is the only global minimizer.

pictures!
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First order optimality condition

Theorem

If x⋆ ∈ Rn is a local minimizer of a differentiable function
f : Rn → R, then ∇f (x⋆) = 0.

proof: suppose by contradiction that ∇f (x⋆) ̸= 0. consider
points of the form xα = x⋆ − α∇f (x⋆) for α > 0. by definition
of the gradient,

lim
α→0

f (xα)− f (x⋆)

α
= −∇f (x⋆)⊤∇f (x⋆) = −∥nablaf (x⋆)∥2 < 0

so for any sufficiently small α > 0, we have f (xα) < f (x⋆),
which contradicts the fact that x⋆ is a local minimizer.
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Second order optimality condition

Theorem

If x⋆ ∈ Rn is a local minimizer of a twice differentiable function
f : Rn → R, then ∇2f (x⋆) ⪰ 0.

proof: similar to the previous proof. use the fact that the
second order approximation

f (xα) ≈ f (x⋆)+∇f (x⋆)⊤(xα−x⋆)+
1

2
(xα−x⋆)⊤∇2f (x⋆)(xα−x⋆)

is accurate locally to show a contradiction unless ∇2f (x⋆) ⪰ 0:
if not, there is a direction v such that vT∇2f (x⋆)v < 0. then
f (x + αv) < f (x⋆) for α arbitrarily small, which contradicts the
fact that x⋆ is a local minimizer.
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Linear program

a linear program is written as

minimize cT x
subject to b − Ax ≥ 0
variable x ∈ Rn

where

▶ A ∈ Rm×n: matrix

▶ b ∈ Rm: vector

▶ c ∈ Rn: vector

how to solve?

▶ use the simplex method

▶ use a conic solver
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Conic form

conic form optimization problem generalizes LP:

minimize cT x
subject to b − Ax ∈ K,

where K is a convex cone:

x ∈ K ⇐⇒ rx ∈ K for any r > 0.

examples:

▶ zero cone K0 = {0}
▶ positive orthant K+ = {x : xi >= 0, i = 1, . . . , n}
▶ second order cone KSOC = {(x , t) : ∥x∥2 ≤ t}
▶ positive semidefinite (PSD) cone
KSDP = {X : X = XT , vTXv ≥ 0, ∀v ∈ Rn}

▶ cartesian products of cones
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Conic form: how to solve?

Morally, conic problems are solved by reducing to a nonlinear
optimization problem

▶ barrier methods (e.g., interior point methods)
▶ add a barrier term to the objective that goes to infinity

when constraints are violated

▶ penalty methods (e.g., augmented Lagrangian methods,
ADMM, . . . )
▶ add a penalty term to the objective that depends on a dual

variable
▶ adjust the dual variable to enforce constraints

35 / 51



Conic form example: nonnegative least squares

minimize ∥Ax − b∥
subject to x ≥ 0

⇕

minimize t
subject to x ∈ K+

(Ax − b, t) ∈ KSOC
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Conic form example: SVM

minimize
∑m

i=1max(0, 1− bia
T
i x) + ∥x∥2

variable x ∈ Rn

⇕

minimize
∑

i si + t
subject to s ≥ diag(b)Ax − 1

s ≥ 0
t ≥ ∥x∥2
⇕

minimize
∑

i si + t
subject to s − diag(b)Ax + 1 ∈ K+

s ∈ K+

[t x ; xT In] ∈ KSDP
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Schur complement

Consider the block matrix

X =

[
A B
BT C

]
.

▶ the Schur complement of A in X is C − BTA−1B.

▶ X ⪰ 0 if and only if A ⪰ 0 and C − BTA−1B ⪰ 0.
(proof by partial minimization of quadratic form
(u, v)TX (u, v) over u ∈ Rm for fixed v ∈ Rn)
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Conic form example: semidefinite programming

minimize λmax(X ) + yTX−1y
subject to X ⪰ 0

⇕

minimize t1 + t2
subject to t1I − X ∈ KSDP[

t2 yT

y X

]
∈ KSDP
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Outline

What topics and why?

Grading

Quadratic optimization

Nonlinear optimization

Conic optimization

Integer programming

Convex optimization

Who’s here?
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Integer programming

integer linear programming generalizes linear programming:

minimize cT x
subject to b − Ax ≥ 0
variable x ∈ Zn

variants:

▶ mixed integer linear programming (MILP):
x ∈ Zn−m ∪ Rm

▶ mixed integer nonlinear programming (MINLP):
x ∈ Zn−m ∪ Rm and nonlinear objective or constraints

how to solve?

▶ use Gurobi, CPLEX, . . .

▶ branch and bound and cut (i.e., a sequence of LPs)

▶ use duality to decompose into a sequence of simpler LPs
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Convex sets

Definition

A set S ⊆ Rn is convex if it contains every chord: for all
θ ∈ [0, 1], w , v ∈ S ,

θw + (1− θ)v ∈ S

Q: Which of these are convex?
ellipsoid, half moon
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Convex functions

a function f : Rn → R is convex iff

▶ Chords. it never lies above its chord: ∀θ ∈ [0, 1], w , v ∈ Rn

f (θw + (1− θ)v) ≤ θf (w) + (1− θ)f (v)

▶ Epigraph. epi(f ) = {(x , t) : t ≥ f (x)} is convex
▶ First order condition. if f is differentiable,

f (v)− f (w) ≥ ∇f (w)⊤(v − w) ∀w , v ∈ Rn

▶ Second order condition. If f is twice differentiable, its
Hessian is always psd:

λmin(∇2f (x)) ≥ 0 for allx ∈ Rn

Q: Which of these are convex?
quadratic, l1, pwl, step, jump, logistic, logistic loss

44 / 51



Convex functions

a function f : Rn → R is convex iff

▶ Chords. it never lies above its chord: ∀θ ∈ [0, 1], w , v ∈ Rn

f (θw + (1− θ)v) ≤ θf (w) + (1− θ)f (v)

▶ Epigraph. epi(f ) = {(x , t) : t ≥ f (x)} is convex
▶ First order condition. if f is differentiable,

f (v)− f (w) ≥ ∇f (w)⊤(v − w) ∀w , v ∈ Rn

▶ Second order condition. If f is twice differentiable, its
Hessian is always psd:

λmin(∇2f (x)) ≥ 0 for allx ∈ Rn

Q: Which of these are convex?
quadratic, l1, pwl, step, jump, logistic, logistic loss

44 / 51



Convex functions

a function f : Rn → R is convex iff

▶ Chords. it never lies above its chord: ∀θ ∈ [0, 1], w , v ∈ Rn

f (θw + (1− θ)v) ≤ θf (w) + (1− θ)f (v)

▶ Epigraph. epi(f ) = {(x , t) : t ≥ f (x)} is convex

▶ First order condition. if f is differentiable,

f (v)− f (w) ≥ ∇f (w)⊤(v − w) ∀w , v ∈ Rn

▶ Second order condition. If f is twice differentiable, its
Hessian is always psd:

λmin(∇2f (x)) ≥ 0 for allx ∈ Rn

Q: Which of these are convex?
quadratic, l1, pwl, step, jump, logistic, logistic loss

44 / 51



Convex functions

a function f : Rn → R is convex iff

▶ Chords. it never lies above its chord: ∀θ ∈ [0, 1], w , v ∈ Rn

f (θw + (1− θ)v) ≤ θf (w) + (1− θ)f (v)

▶ Epigraph. epi(f ) = {(x , t) : t ≥ f (x)} is convex
▶ First order condition. if f is differentiable,

f (v)− f (w) ≥ ∇f (w)⊤(v − w) ∀w , v ∈ Rn

▶ Second order condition. If f is twice differentiable, its
Hessian is always psd:

λmin(∇2f (x)) ≥ 0 for allx ∈ Rn

Q: Which of these are convex?
quadratic, l1, pwl, step, jump, logistic, logistic loss

44 / 51



Convex functions

a function f : Rn → R is convex iff

▶ Chords. it never lies above its chord: ∀θ ∈ [0, 1], w , v ∈ Rn

f (θw + (1− θ)v) ≤ θf (w) + (1− θ)f (v)

▶ Epigraph. epi(f ) = {(x , t) : t ≥ f (x)} is convex
▶ First order condition. if f is differentiable,

f (v)− f (w) ≥ ∇f (w)⊤(v − w) ∀w , v ∈ Rn

▶ Second order condition. If f is twice differentiable, its
Hessian is always psd:

λmin(∇2f (x)) ≥ 0 for allx ∈ Rn

Q: Which of these are convex?
quadratic, l1, pwl, step, jump, logistic, logistic loss

44 / 51



Convex functions

a function f : Rn → R is convex iff

▶ Chords. it never lies above its chord: ∀θ ∈ [0, 1], w , v ∈ Rn

f (θw + (1− θ)v) ≤ θf (w) + (1− θ)f (v)

▶ Epigraph. epi(f ) = {(x , t) : t ≥ f (x)} is convex
▶ First order condition. if f is differentiable,

f (v)− f (w) ≥ ∇f (w)⊤(v − w) ∀w , v ∈ Rn

▶ Second order condition. If f is twice differentiable, its
Hessian is always psd:

λmin(∇2f (x)) ≥ 0 for allx ∈ Rn

Q: Which of these are convex?
quadratic, l1, pwl, step, jump, logistic, logistic loss

44 / 51



Convex optimization

an optimization problem is convex if:

▶ Geometrically: the feasible set and the epigraph of the
objective are convex

▶ NLP: the objective and inequality constraints are convex
functions, and the equality constraints are affine

▶ Conic: all the cones are convex cones

why convex optimization?

▶ relatively complete theory
▶ efficient solvers
▶ conceptual tools that generalize

duality, stopping conditions, . . .

▶ a function f is concave if −f is convex
▶ concave maximization results in a convex optimization

problem
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Local minima are global for convex functions

Theorem

If x⋆ is a local minimizer of a convex function f , then x⋆ is a
global minimizer.

proof: suppose by contradiction that another point x ′ is a
global minimizer, with f (x ′) < f (x⋆). draw the chord between
x ′ and x⋆. since the chord lies above f , every convex
combination x = θx⋆ + (1− θ)x ′ of x ′ and x⋆ for θ ∈ (0, 1) has
a value f (x) < f (x⋆). this is true even for x → x⋆, contradicting
our assumption that x⋆ is a local minimizer.
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Corollary

Corollary

If f is convex and differentiable and ∇f (x⋆) = 0, then x⋆ is a
global minimizer.

Q: Is a global minimizer of a convex function always unique?
A: No. Picture.
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Modern solvers

▶ algebraic modeling languages, e.g.
▶ JuMP facilitates nonlinear and mixed integer optimization
▶ CVX* (CVX, CVXPY, Convex.jl, . . . ) transform a problem

into conic form

▶ and modern solvers
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https://jump.dev/
https://jump.dev/JuMP.jl/stable/installation/#Supported-solvers


Optimization modeling

▶ Rocket control

▶ Power systems

▶ AML
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https://jump.dev/JuMP.jl/stable/tutorials/nonlinear/rocket_control/
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://jump.dev/JuMP.jl/stable/background/algebraic_modeling_languages/
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Questions for you

respond at pollev.com/madeleineudell824

▶ program / major

▶ year of program

▶ schedule conflicts

▶ what other optimization courses have you taken?

▶ what optimization techniques do you want to learn?

▶ what’s your favorite algorithm (or algorithmic trick)
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pollev.com/madeleineudell824
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