Interior Point Methods for Convex Optimization

Luiz-Rafael Santos

1.r.santos@ufsc.br

O 3 9 O @lrsantos11

https://lrsantos11.github.io/

CME 307 / MS&E 311

UFSC, Brazil & MS&E/Stanford, USA

Outline

IPM for Linear and Quadratic Programs

IPM for Convex nonlinear programming

IPM for Conic Optimization

Convex optimization

Convex optimization problem

$$\begin{aligned} & \text{min} & & f(x) \\ & \text{s.t.} & & g(x) \leq 0 & & (s \in \mathbb{R}^p) \\ & & & Ax = b & & (y \in \mathbb{R}^m) \end{aligned}$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^p$ are smooth and convex, and $A \in \mathbb{R}^{m \times n}$ is full rank.

KKT conditions

$$\nabla f(x) + \sum_{i=1}^{m} y_i a_i + \sum_{j=1}^{p} s_j \nabla g_j(x) = 0$$

$$Ax = b$$

$$g(x) \le 0$$

$$s \ge 0$$

$$s_j g_j(x) = 0 \quad \forall j = 1, \dots, p$$

IPM for Linear and Quadratic Programs

Linear/Quadratic Program

min
$$c^{\top}x + \frac{1}{2}x^{\top}Qx$$

s.t. $Ax = b$,
 $x \ge 0$,

where $Q \in \mathbb{S}^n_+$, and $A \in \mathbb{R}^{m \times n}$ is full-rank.

- $\mathcal{P} \coloneqq \{x \in \mathbb{R}^n \mid Ax = b, x \ge 0\}$ is a polyhedron.
- If Q=0, then we have a linear program.

How to solve LP/QP problems?

If we ask Pelé, perhaps he would say "Go through the middle!".

Building blocks of IPM

What do we need to derive the Interior Point Method?

- Duality theory: Lagrangian function; KKT (first order optimality) condition.
- Logarithmic barriers.
- Newton method (with a good linear solver)

Then we will enjoy fantastic convergence properties:

- Theoretical: $O(\sqrt{n}\log(1/\varepsilon))$ iterations
- lacktriangledown Practical: $O(\log n \log(1/arepsilon))$ iterations (but the per-iteration cost may be high)

What is the core of an IPM?

IPM procedure

- replace inequalities with log barriers;
- form the Lagrangian;
- write down the KKT conditions of the perturbed problem;
- find one or more directions based on Newton method applied to KKT system;
- smartly combine the directions and compute a stepsize.

Duality and KKT conditions

Primal-dual pairs of QP

Primal problem

$$\begin{aligned} & \min \quad c^\top x + \tfrac{1}{2} x^\top Q x \\ & \text{s.t.} & Ax = b, \\ & x \geq 0, \end{aligned}$$

Dual problem

$$\begin{aligned} & \max & b^\top y - \frac{1}{2} x^\top Q x \\ & \text{s.t.} & A^\top y + s - Q x = c, \\ & s \geq 0, \end{aligned}$$

KKT conditions

$$Ax = b$$

$$A^\top y + s - Qx = c$$

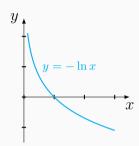
$$XSe = 0 \quad (i.e., x_j \cdot s_j = 0 \ \forall j) \text{ complementarity}$$

$$(x,s) \geq 0$$

where for $X = \operatorname{diag}(x_1, \dots, x_n), S = \operatorname{diag}(s_1, \dots, s_n) \in \mathbb{R}^{n \times n}$ and $e = (1, \dots, 1) \in \mathbb{R}^n$.

Logarithmic barrier

 $\frac{-\ln x_j}{\text{``replaces'' the inequality}}$ $x_j \geq 0$



■ Them minimization of $-\sum_{j=1}^n \ln x_j$ is equivalent to the maximization of the product of distances from all hyperplanes defining the positive orthant: it prevents all x_j from approaching zero.

$$\min e^{-\sum_{j=1}^{n} \ln x_j} \iff \max \prod_{1 \le j \le n} x_j$$

8

Self-concordant logarithmic barrier

1st step

Replace the primal QP

$$\begin{aligned} & \min \quad c^\top x + \tfrac{1}{2} x^\top Q x \\ & \text{s.t.} & Ax = b, \\ & x \geq 0, \end{aligned}$$

with the barrier primal QP

$$\min \quad c^\top x + \frac{1}{2} x^\top Q x - \mu \sum_{j=1}^n \ln x_j$$
 s.t.
$$Ax = b,$$

9

Logarithmic barrier and stationary

2nd step: Lagrangian function

$$\mathcal{L}(x, y, \mu) = c^{\top} x + \frac{1}{2} x^{\top} Q x - y^{\top} (A x - b) - \mu \sum_{j=1}^{n} \ln x_j$$

Conditions for a stationary point of the lagrangian

$$\nabla_x \mathcal{L}(x, y, \mu) = c + Qx - A^{\top} y - \mu X^{-1} e = 0$$
$$\nabla_y \mathcal{L}(x, y, \mu) = Ax - b = 0$$

with
$$X^{-1} = \operatorname{diag}(x_1^{-1}, \dots, x_n^{-1}) \in \mathbb{R}^{n \times n}, (x_j > 0).$$

KKT conditions for barrier problem

• Define $s \coloneqq \mu X^{-1}e$, which implies $XSe = \mu e$, to get

$$Ax = b$$

$$A^{\top}y + s - Qx = c$$

$$XSe = \mu e$$

$$(x, s) > 0$$

$$Ax = b$$

$$A^{\top}y + s - Qx = c$$

$$XSe = 0$$

$$(x, s) \ge 0$$

$$\mathsf{KKT}_{\mu} \to \mathsf{KKT} \text{ as } \mu \to 0.$$

Central path (LP case)

• Parameter μ controls the distance to optimality

$$c^{\top}x - b^{\top}y = c^{\top}x - x^{\top}A^{\top}y = x^{\top}s = n\mu$$

• Analytic center (μ -center): a (unique) point

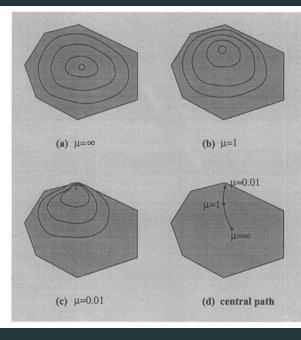
$$(x(\mu),y(\mu),s(\mu)),\quad x(\mu)>0,s(\mu)>0$$

that satisfies the KKT conditions.

The curve

$$C_{\mu} = \{(x(\mu), y(\mu), s(\mu)) \mid \mu > 0\}$$

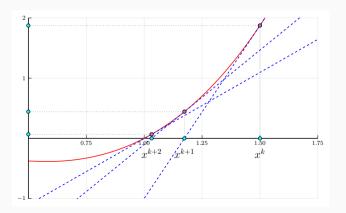
is called the primal-dual central path.



Newton Method

- For $F: \mathbb{R}^n \to \mathbb{R}^n$ smooth, solve F(x) = 0.
- Newton method:

$$x^{k+1} = x^k - \alpha_k J_F(x^k)^{-1} F(x^k)$$



Apply Newton Method to KKT_{μ}

 The first order optimality conditions for the barrier problem form a large system of nonlinear equations

$$F(x, y, s) = 0$$

where $F: \mathbb{R}^{2n+m} \to \mathbb{R}^{2n+m}$ is an application defined as follows:

$$F(x, y, s) = \begin{bmatrix} Ax & -b \\ A^{\top}y + s - Q & -c \\ XSe & -\mu e \end{bmatrix}$$

 Actually, the first two terms of it are linear; only the last one, corresponding to the complementarity condition, is nonlinear. Note that

$$J_F(x, y, s) = \begin{bmatrix} A & 0 & 0 \\ -Q & A^{\top} & I \\ S & 0 & X \end{bmatrix}$$

Interior-point QP Algorithm

IPM Framework

We fix the barrier parameter μ and make only one (damped) Newton step towards the solution of FOC. We do not solve the current FOC exactly. Instead, we immediately reduce the barrier parameter μ (to ensure progress towards optimality) and repeat the process.

- Given $(x_0, y_0, s_0) \in \mathcal{F}^0$, $\mu_0 = \frac{1}{n} \cdot (x^0)^\top s^0$
- For $k = 0, 1, 2, \dots$
 - k = k + 1
 - $\mu_k = \sigma \mu_{k-1}$, where $\sigma \in (0,1)$
 - Find Newton direction $(\Delta x^k, \Delta y^k, \Delta s^k)$ by solving

$$\begin{bmatrix} A & 0 & 0 \\ -Q & A^{\top} & I \\ S^k & 0 & X^k \end{bmatrix} \begin{bmatrix} \Delta x^k \\ \Delta y^k \\ \Delta s^k \end{bmatrix} = \begin{bmatrix} b - Ax^k \\ c - A^{\top}y^k - s^k + Qx^k \\ \mu_k e - X^k S^k e \end{bmatrix}$$

- Find step length α_k such that $(x^k + \alpha_k \Delta x^k, y^k + \alpha_k \Delta y^k, s^k + \alpha_k \Delta s^k) \in \mathcal{F}^0$.
- Make step $(x^{k+1}, y^{k+1}, s^{k+1}) = (x^k + \alpha_k \Delta x^k, y^k + \alpha_k \Delta y^k, s^k + \alpha_k \Delta s^k)$.

Path-following algorithm

• Short-step path-following method: $\mathcal{O}(\sqrt{n})$ complexity result

Theorem ([Gondzio, 2012, Thm. 3.1])

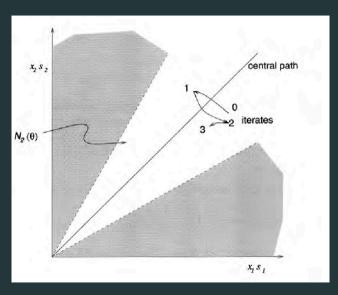
Given $\epsilon > 0$, suppose that a feasible starting point $(x^0, y^0, s^0) \in \mathcal{N}_2(0.1)$ satisfies

$$\left(x^0\right)^\top s^0 = n\mu^0, \text{ where } \mu^0 \leq 1/\epsilon^\kappa,$$

for some positive constant κ . Then there exists an index K with $K = \mathcal{O}(\sqrt{n} \ln(1/\epsilon))$ such that

$$\mu^k \le \epsilon, \quad \forall k \ge K$$

- θ -neighborhood of the central path:
 - $\mathcal{N}_2(\theta) := \{(x,y,s) \in \mathcal{F}^0 \mid ||XSe \mu e|| \leq \theta \mu\}, \text{ with } \mu = \frac{1}{n}x^\top s.$
- Slow progress towards optimality



LP as extension of QP

Newton direction

$$\begin{bmatrix} A & 0 & 0 \\ -Q & A^{\top} & I \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^{\top}y - s + Qx \\ \mu_k e - XSe \end{bmatrix} = \begin{bmatrix} \xi_p \\ \xi_d \\ \xi_{\mu} \end{bmatrix}$$

• Since $\Delta s = X^{-1}\xi_{\mu} - X^{-1}S\Delta x$, we get $(-Q - X^{-1}S)\Delta x + A^{\top}\Delta y = \xi_d - X^{-1}\xi_{\mu}$, so

Augmented system

$$\begin{bmatrix} -Q - \Theta^{-1} & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1} \xi_{\mu} \\ \xi_p \end{bmatrix}$$

- $\Theta = XS^{-1}$ (ill-conditioned matrix)
- QP is a natural extension of LP

LP: Augmented vs Normal Equations

Augmented system

$$\begin{bmatrix} -\Theta^{-1} & A^{\mathsf{T}} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1} \xi_\mu \\ \xi_p \end{bmatrix} =: \begin{bmatrix} g \\ \xi_p \end{bmatrix}$$

Normal equations

Eliminate Δx from the first equations gets us the normal equations

$$(A\Theta A^{\top})\Delta y = A\Theta g + \xi_p$$

- One can use normal equations in LP, but not in QP.
- Normal equations in QP $(A(Q+\Theta)A^{\top})\Delta y=g$ may become almost completely dense even for sparse matrices A and Q.
- In QP, usually the indefinite augmented system form is used.

IPM for NLP

Convex NLP

$$\min f(x) \quad \text{ s.t.} \quad g(x) + z = 0, z \ge 0$$

• Replace inequality $z \ge 0$ with logarithmic barrier

$$\min f(x) - \mu \sum_{i=1}^{m} \ln(z_i) \quad \text{s.t.} \quad g(x) + z = 0$$

Write out Lagrangian

$$L(x, y, z, \mu) = f(x) + y^{\top}(g(x) + z) - \mu \sum_{i=1}^{m} \ln(z_i)$$

IPM for NLP

Write conditions for stationary point

$$\nabla_x L(x, z, y) = \nabla f(x) + J_g(x)^\top y = 0$$
$$\nabla_y L(x, z, y) = g(x) + z = 0$$
$$\nabla_z L(x, z, y) = y - \mu Z^{-1} e = 0$$

Write KKT system

$$\nabla f(x) + J_g(x)^{\top} y = 0,$$

$$g(x) + z = 0$$

$$YZe = \mu e$$

Newton for KKT of NLP

- Apply Newton method for KKT system
- Jacobian matrix of KKT system

$$J_F(x, z, y) = \begin{bmatrix} Q(x, y) & J_g(x)^\top & 0 \\ J_g(x) & 0 & I \\ 0 & Z & Y \end{bmatrix}$$

where $Q(x,y) = \nabla^2 f(x) + \sum_{i=1}^m y_i \nabla^2 g_i(x)$ is the Hessian of L

Newton step for KKT system

$$\begin{bmatrix} Q(x,y) & J_g(x)^{\top} & 0 \\ J_g(x) & 0 & I \\ 0 & Z & Y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - J_g(x)^{\top} y \\ -g(x) - z \\ \mu e - Y Z e \end{bmatrix}$$

From QP to NLP

Newton direction for NLP

$$\begin{bmatrix} Q(x,y) & J_g(x)^{\top} & 0 \\ J_g(x) & 0 & I \\ 0 & Z & Y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - J_g(x)^{\top} y \\ -g(x) - z \\ \mu e - Y Z e \end{bmatrix}$$

Augmented system for NLP

$$\begin{bmatrix} Q(x,y) & J_g(x)^\top \\ J_g(x) & -ZY^{-1} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - J_g(x)^\top y \\ -g(x) - \mu Y^{-1} e \end{bmatrix}$$

- NLP is a natural extension of QP
- Computation of Q(x,y) and $J_g(x)$ at each iteration (Automatic differentiation(?))
- Caveat: using trust region method to choose stepsize

Self-concordant function

Definition

We call function f self-concordant if there exists a constant $M_f \geq 0$ such that the inequality

$$\nabla^3 f(x)[u, u, u] \le M_f ||u||_{\nabla^2 f(x)}^{3/2}$$

holds for any $x \in \text{dom } f$ and $u \in \mathbb{R}^n$.

• A self-concordant function is always well approximated by a quadratic model because the error of such an approximation can be bounded by the $\|u\|_{\nabla^2 f(x)}^{3/2}$

Theorem ([Boyd and Vandenberghe, 2004, Section 11.5])

Newton's method with line search finds an ε approximate solution in less than $T \coloneqq \operatorname{constant} \times (f(x_0) - f^\star) + \log_2 \log_2 \frac{1}{\varepsilon}$ iterations.

Log-barrier is self-concordant

Theorem

The barrier function $-\ln(x)$ is self-concordant in \mathbb{R}_+ .

Proof.

Consider $f(x) = -\ln(x)$, then

$$f'(x) = -\frac{1}{x}$$
, $f''(x) = \frac{1}{x^2}$, $f'''(x) = -\frac{2}{x^3}$

Complete and check that self-concordance condition holds with $M_f=2$.

- $-\ln(1/x^{\alpha})$, with $\alpha \in (0,\infty)$ is not self-concordant in \mathbb{R}_+ .
- $\exp(1/x)$ is not self-concordant in \mathbb{R}_+ .

Conic optimization

Consider the optimization problem

where K is a convex closed cone.

Tha associated dual is

$$\begin{aligned} & \max & b^\top y \\ & \text{s.t.} & A^\top y + s = c \\ & & x \in K^* \text{ (Dual cone)} \end{aligned}$$

Weak duality

$$c^{\top}x - b^{\top}y = x^{\top}(c - A^{\top}y) = x^{\top}s \ge 0$$

Conic optimization can be solved in polynomial time with IPMs

Second-order conic optimization

- $K = \mathbb{L} := \{(x,t) \mid x \in \mathbb{R}^{n-1}, t \in \mathbb{R}, ||x||_2 \le t, t \ge 0\}$ (Lorenz or second-order cone)
- Logarithmic barrier function for the second-order cone

$$f(x,t) = \begin{cases} -\ln(t^2 - \|x\|_2^2) & \text{if } \|x\| < t \\ +\infty & \text{otherwise} \end{cases}$$

Theorem

The barrier function f(x,t) is self-concordant on \mathbb{L} .

Exercise: Prove in case n=2.

Semidefinite programming

- lacksquare Variable now is a symmetric matrix $X\in \mathbb{S}^n$
- $K = \mathbb{S}^n_+$ (Semi-definite cone)

SDPs and its dual

$$\begin{array}{lll} \min & C \bullet X & \max & b^\top y \\ \text{s.t.} & A_i \bullet X = b_i, i = 1, \dots, m & \text{s.t.} & \sum_{i=1}^m y_i A_i + S = C \\ & X \succeq 0 & S \succeq 0 \end{array}$$

- $A_i, C \in \mathbb{S}^n$ and $b \in \mathbb{R}^m$ given, and $X, S \in \mathbb{S}^n$ and $y \in \mathbb{R}^m$ unknown.
- $\bullet X \bullet Y = \operatorname{tr}(X^{\top}Y).$

Theorem (Weak duality for SDP)

If X is primal feasible and (y,S) is dual feasible, then

$$C \bullet X - b^{\top} y = X \bullet S \ge 0$$

Logarithmic barrier for SDP

Logarithmic barrier function for the semi-definite cone

$$f(X) = \begin{cases} -\ln(\det(X)) & \text{if } X \succ 0\\ +\infty & \text{otherwise} \end{cases}$$

- Facts (for small t):
 - $\bullet \det(I + tU) = 1 + t\operatorname{tr}(U) + \mathcal{O}(t^2)$
 - $\ln(1 + t\operatorname{tr}(U)) \approx t\operatorname{tr}(U)$
- Let $X \succ 0$ and $H \in \mathbb{S}^n$ be given. Then

$$f(X + tH) = -\ln(\det(X + tH)) = -\ln(\det(X(I + tX^{-1}H)))$$

$$= -\ln(\det(X)) - \ln(\det(I + tX^{-1}H))$$

$$= -\ln(\det(X)) - \ln(1 + t\operatorname{tr}(X^{-1}H) + \mathcal{O}(t^2))$$

$$= f(X) - tX^{-1} \bullet H + \mathcal{O}(t^2)$$

Derivatives of Logarithmic barrier for SDP

• First derivative of f(X)

$$f'(X) = \lim_{t \to 0} \frac{f(X + tH) - f(X)}{t} = -X^{-1}$$

So
$$Df(X)[H] = -X^{-1} \bullet H$$
.

• Second derivative of f(X)

$$f'(X+tH) = -[X(I+tX^{-1}H)]^{-1} = -[I-tX^{-1}H + \mathcal{O}(t^2)]X^{-1}$$
$$= f'(X) + tX^{-1}HX^{-1} + \mathcal{O}(t^2)$$

so
$$f''(X)[H] = X^{-1}HX^{-1}$$
 and $D^2f(X)[H,G] = X^{-1}HX^{-1} \bullet G$.

•
$$f'''(X)[H,G] = -X^{-1}HX^{-1}GX^{-1} - X^{-1}GX^{-1}HX^{-1}$$

Characterization of self-concordance for SDP

Theorem

The function $f(X) = -\ln \det X$ is a convex barrier for \mathbb{S}^n_+ .

Proof sketch.

Let $\varphi(t)=F(X+tH)$. Then, prove that $\varphi''(t)\geq 0$ for t>0 such that $X+tH\succ 0$. Therefore, when $X\succ 0$ approaches a singular matrix, its determinant approaches zero, and the function $f(X)\to +\infty$.

Theorem ([Nestervov and Nemirovskii, 1994])

The barrier function $f(X) = -\ln \det X$ is self-concordant on \mathbb{S}^n_+ .

Solving SDPs with IPMs

Replace the primal SDP

min
$$C \bullet X$$

s.t. $AX = b$, $X \succeq 0$,

with the primal barrier SDP

min
$$C \bullet X + \mu f(X)$$

s.t. $AX = b$,

(with a barrier parameter $\mu \geq 0$).

Formulate the Lagrangian

$$L(X, y, S) = C \bullet X + \mu f(X) - y^{T} (AX - b),$$

with $y \in \mathbb{R}^m$, and write the first order conditions (FOC) for a stationary point of L:

$$C + \mu f'(X) - \mathcal{A}^* y = 0$$

Solving SDPs with IPMs (cont'd)

• Use $f(X) = -\ln \det X$ and $f'(X) = -X^{-1}$ to obtain

$$C - \mu X^{-1} - \mathcal{A}^* y = 0$$

• Denote $S = \mu X^{-1}$, i.e., $XS = \mu I$. Then, the FOC can be written as

$$AX = b$$
$$A^*y + S = C$$
$$XS = \mu I$$

with $X, S \in \mathbb{S}^n_{++}$.

Newton direction

The differentiation in the above system is a nontrivial operation. The direction is the solution of the system:

$$\begin{bmatrix} \mathcal{A} & 0 & 0 \\ 0 & \mathcal{A}^* & \mathcal{I} \\ \mu \left(X^{-1} \odot X^{-1} \right) & 0 & \mathcal{I} \end{bmatrix} \cdot \begin{bmatrix} \Delta X \\ \Delta y \\ \Delta S \end{bmatrix} = \begin{bmatrix} \xi_b \\ \xi_C \\ \xi_{\mu} \end{bmatrix}.$$

We introduce a useful notation $P \odot Q$ for $n \times n$ matrices P and Q is the Kronecker product. This defines a linear operator from \mathbb{S}^n to \mathbb{S}^n given by

$$(P \odot Q)U = \frac{1}{2} \left(PUQ^T + QUP^T \right).$$

Interior point methods bird-view

- Logarithmic barrier functions for SOCP and SDP Self-concordant barriers
 - polynomial complexity (predictable behaviour)
- Unified view of optimization
 - from LP via QP to NLP, SOCP and SDP
- Efficiency
- good for SOCP
- \blacksquare problematic for SDP because solving the problem of size n involves linear algebra operations in dimension n^2
 - and this requires n^6 flops!

Thanks for your attention!

Check my webpage

https://lrsantos11.github.io.

😯 🗗 🗹 @lrsantos11

≥ 1.r.santos@ufsc.br / lrsantos11@gmail.com