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Convex optimization

Convex optimization problem
min  f(x)
st. g(z) <0 (seRP)
Az=b (yeR™)

where f: R™ — R and g : R™ — RP are smooth and convex, and A € R™*" is full rank.

s KKT conditions

m p

Vi(z)+ Zyiai + Z s;Vg(x) =0
i=1 j=1



IPM for Linear and Quadratic Programs

If we ask Pelé, perhaps he would say
Linear/Quadratic Program “Go through the middle!”.

g 7R Rl
min ¢’z + %L Qx
s.t. Axr = b,
x>0,
where @ € 87, and A € R™*" is full-rank.
s P:={xeR"| Az = b,z > 0} is a polyhedron.

= If @ =0, then we have a linear program.

How to solve LP/QP problems?




Building blocks of IPM

What do we need to derive the Interior Point Method?

= Duality theory: Lagrangian function; KKT (first order optimality) condition.
= Logarithmic barriers.

= Newton method (with a good linear solver)

Then we will enjoy fantastic convergence properties:

= Theoretical: O(y/nlog(1/¢)) iterations
= Practical: O(lognlog(1/e)) iterations (but the per-iteration cost may be high)



What is the core of an IPM?

IPM procedure

= replace inequalities with log barriers;

form the Lagrangian;

write down the KKT conditions of the perturbed problem;

find one or more directions based on Newton method applied to KKT system;

smartly combine the directions and compute a stepsize.



Duality and KKT conditions

Primal-dual pairs of QP

Primal problem Dual problem
min ¢’z + %xTQx max bly — %xTQm‘
s.t. Az =b, st. ATy+s—Qr=c,
x>0, s >0,

KKT conditions

Ax =10

ATy+s—Qr=c
XSe=0 (i.e,zj-s; =0Vj) complementarity

(x,8) >0

where for X = diag(z1,...,2,),S = diag(s1,...,$,) € R**™ and e = (1,...,1) € R™. v



Logarithmic barrier

Yy

—Inz;
“replaces” the inequality

= Them minimization of —>>"_, Inx; is equivalent to the maximization of the product of
distances from all hyperplanes defining the positive orthant:

it prevents all =; from approaching zero.

. _\n p
min e~ 27=1"% = max || 7
1<j<n



Self-concordant logarithmic barrier

1st step
Replace the primal QP
min ¢’z + ZETQZE
s.t. Ar = b,
x>0,

with the barrier primal QP

min ¢’z + J:TQI— g Inx;

s.t. Axr =0,



Logarithmic barrier and stationary

2nd step: Lagrangian function

1
ﬁ(%y,ﬂ):CTIJFiITQI'*y (Az —b) — MZIHLJ

Conditions for a stationary point of the lagrangian

Vmﬁ(‘rayvu) = C+QZL’—ATy—/LX_16 =0
VyL(x,y,pu) =Az—b=0

with X1 = diag(z7,...,z; ') € R™¥", (x; > 0).
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KKT conditions for barrier problem

= Define s :== X e, which implies X Se = pe, to get

KKT, KKT
Az =b Az =0
Aly+s—Qz=c Aly+s—Qr=c
XSe = pe XSe=0
(x,8) >0 (x,8) >0

KKT, — KKT as u — 0.

11



Central path (LP case)

= Parameter 1 controls the distance to optimality

T

cle—by=c'

t—z Aly=z's=np

= Analytic center (u-center): a (unique) point

that satisfies the KKT conditions.

= The curve
Cu = {(=(1),y(1),s(w)) | u > 0}

is called the primal-dual central path.
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(¢) u=0.01 (d) central path




Newton od

= For F: R™ — R™ smooth, solve F(x) = 0.
= Newton method:
F T = oF — 0y Jp(a®) TR ()

)
1.75
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Apply Newton Method to KKT,

= The first order optimality conditions for the barrier problem form a large system of
nonlinear equations
F(z,y,s) =0

where F': R?"t™ 5 R?"*™ is an application defined as follows:

Ax —b
F(z,y,s)= |[ATy+5-Q —c
X Se — e

= Actually, the first two terms of it are linear; only the last one, corresponding to the
complementarity condition, is nonlinear. Note that

A 0 0
Jr(x,y,s) = |-Q AT I
S 0 X

14



Interior-point QP Algorithm

IPM Framework

We fix the barrier parameter 1 and make only one (damped) Newton step towards the solution of
FOC. We do not solve the current FOC exactly. Instead, we immediately reduce the barrier
parameter p (to ensure progress towards optimality) and repeat the process.

= Given (wo,%0,50) € F°, po = = - (2%)7s°
= Fork=0,1,2,...

» k=k+1

= Ui = opg—1, where o € (0,1)

= Find Newton direction (Az"*, Ay*, As*) by solving

[ A 0 0 1 Az® b— Azk
—-Q AT I AyF| = |e— ATy" — s% + Qa*
LS‘" 0 X"J Ask ure — X Ske

= Find step length ay such that (2" + arAz® y* + arAyF, s" + apAs®) € F°.
= Make step (z"T1, ¢ 5" = (2% + apAz® yF + anAyF, s + arAsh). 15



Path-following algorithm

= Short-step path-following method: O(y/n) complexity result

Theorem ([Gondzio, 2012, Thm. 3.1])
Given € > 0, suppose that a feasible starting point (xo,yo S ) € N5(0.1) satisfies

(xO)T sY =nu®, where p° < 1/¢",

for some positive constant . Then there exists an index K with K = O(\/nln(1/¢)) such
that

pk<e, VE>K

= (-neighborhood of the central path:
No(0) = {(z,y,s) € FO| | X Se — pel| < Ou}, with p= LaTs.

= Slow progress towards optimality 6


https://doi.org/10.1016/j.ejor.2011.09.017




LP as extension of QP

Newton direction

A 0 0] |Ax b— Ax &
—Q AT I| |Ay| =|c—ATy—s+Qz| = |&
S 0 X| |As ure — X Se En

» Since As= X", — X 19Az, we get (—Q — X 'S)Ax+ ATAy =&, — X 1€, so

Augmented system

—Q-0"1 AT
A 0

Az

Ay fp

_ [gd - X1§/L‘|

» © = XS~! (ill-conditioned matrix)

= QP is a natural extension of LP 17



LP: Augmented vs Normal Equations

Augmented system

Normal equations

Eliminate Az from the first equations gets us the normal equations

(ABAT)Ay = ABg + &,

= One can use normal equations in LP, but not in QP.

= Normal equations in QP (A(Q + ©)AT)Ay = g may become almost completely dense
even for sparse matrices A and Q.

= In QP, usually the indefinite augmented system form is used. -



IPM for NLP

= Convex NLP
min f(z) st g(x)+z=0,2>0

= Replace inequality z > 0 with logarithmic barrier
m
min f(z) — p Z In(z;) st gz)+z2=0
i=1
= Write out Lagrangian

L(z,y,2z,p) = f(z) +y " (9(z) + 2) — Z In(z;)

19



IPM for NLP

= Write conditions for stationary point

Vo L(@,2,y) = Vf(z) + Jg(z) Ty = 0
VyL(z,z,y) =g(z)+2=0
V.L(z,2,y) =y —pZ te=0

= Write KKT system

V(@) + Jg(x) 'y =0,
g(z)+2=0
YZe = pe

20



Newton for KKT of NLP

= Apply Newton method for KKT system

= Jacobian matrix of KKT system

where Q(z,y) = V2 f(x) + Y."; ¥;V2gi(x) is the Hessian of L
= Newton step for KKT system

Qz,y) Jy(x)T 0| [Az —Vf(z) = Jy(2) Ty
Jg() 0 Il [Ay| = —g(z)— 2
0 Z Y| [Az pe —Y Ze

21



From QP to NLP

= Newton direction for NLP

Q) J@)T 0] [Ad]  [-Vi@) - Jy@)Ty
Jy(x) 0 1| |Ay| = —g(z) — 2
0 Z Y| |Az pe—YZe

= Augmented system for NLP

Az

Qa,y) Jy(x)T
Ay

1 B [—vm - %(wﬁy]
Jg(z) —ZY~

= NLP is a natural extension of QP
= Computation of Q)(z,y) and J,(x) at each iteration (Automatic differentiation(?))

= Caveat: using trust region method to choose stepsize
22



Self-concordant function

Definition
We call function f self-concordant if there exists a constant M > 0 such that the inequality

3/2
V3 f(2)[u, u,u] < ]V[fH““v/?f(x)

holds for any x € dom f and u € R".

= A self-concordant function is always well approximated by a quadratic model because the

error of such an approximation can be bounded by the ||1LH3V/3f(I>

Theorem ([Boyd and Vandenberghe, 2004, Section 11.5])

Newton's method with line search finds an € approximate solution in less than

T = constant X (f(xo) — f*) + log, log,y l iterations.

23


https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

Log-barrier is self-concordant

Theorem

The barrier function —In(z) is self~concordant in R .

Proof.
Consider f(z) = —In(x), then

1 1 2
" = —— " = — " —_
F@=-= @)= @=-3
Complete and check that self-concordance condition holds with M, = 2. O

= —In(1/xz®), with o € (0,00) is not self-concordant in R..

= exp(1l/z) is not self-concordant in R..

24



Conic optimization

Consider the optimization problem

min c¢'x
st. Ax =0
re K

where K is a convex closed cone.

Tha associated dual is

max b'y
st. Aly+s=c
z € K* (Dual cone)

Weak duality
clz—bly= :L'T(C — ATy) =27s>0

Conic optimization can be solved in polynomial time with IPMs
25



Second-order conic optimization

» K=L:={(z,t) |z € R"" 1t € R,|z|2 < t,t >0} (Lorenz or second-order cone)

= Logarithmic barrier function for the second-order cone

Fat) = {w? —ll2ll3) i [|l=]l <t

400 otherwise

Theorem
The barrier function f(x,t) is self-concordant on IL.

Exercise: Prove in case n = 2.

26



Semidefinite programming

= Variable now is a symmetric matrix X € $"

» K =8 (Semi-definite cone)

SDPs and its dual

min CeX max b'y
st. A, eX=0b,i=1,....m st. > yA+S=C
X =0 S>=0

= A;,C €8 and b€ R™ given, and X, S5 € $" and y € R unknown.
» XeV =tr(XTY).

Theorem (Weak duality for SDP)
If X is primal feasible and (y, S) is dual feasible, then

CeX—-by=XeS>0
27



Logarithmic barrier for SDP

= Logarithmic barrier function for the semi-definite cone

{ In(det(X)) if X =0

+00 otherwise

= Facts (for small ¢):

o det(f +tU) =1+ ttr(U) + O(t?)

« In(1 +ttr(U)) ~ ttr(U)
= Let X > 0and H € 5" be given. Then

f(X +tH) = —In(det(X + tH)) = — In(det(X (I +tX ' H)))
det(X)) — In(det(I +tX 1 H))
det(X)) — In(1 + ttr(X 1 H) + O(t?))
tX e H+ O(t?)

—1In

—In

(
(
(
= f(X) -

28



Derivatives of Logarithmic barrier for SDP

= First derivative of f(X)

So Df(X)[H]=-X"'eH.
= Second derivative of f(X)
fI(X+tH)=—[X(I+tX'H) ' = —[I —tX 'H+ 0@} x!
= f(X)+tXTHX '+ O(t?)
so f/(X)[H)=X"'HX ! and D?f(X)[H,G] = X 'HX ! eG.
- j"///<AX)|:H1 (;v} _ 7}(7]]{)(7] G}(f] o A)(fl GXfl,HAXf]

29



Characterization of self-concordance for SDP

Theorem

The function f(X) = —Indet X is a convex barrier for $! .

Proof sketch.

Let () = F(X + tH). Then, prove that ¢”(t) > 0 for t > 0 such that X +¢tH > 0.
Therefore, when X > 0 approaches a singular matrix, its determinant approaches zero, and
the function f(X) — +oo. O

Theorem ([Nestervov and Nemirovskii, 1994])
The barrier function f(X) = —Indet X is self-concordant on $'! .

30



Solving SDPs with IPMs

= Replace the primal SDP

min CeX
st.  AX =0,
X =0,

with the primal barrier SDP

min  CeX + pf(X)
st.  AX =0,

(with a barrier parameter u > 0 ).
= Formulate the Lagrangian

L(X,y,8) = C o X + uf(X) —y" (AX —b),
with y € R™, and write the first order conditions (FOC) for a stationary point of L:
C+pf(X)-Ay=0

31



Solving SDPs with IPMs (cont’d)

» Use f(X)=—Indet X and f/(X)=—X""! to obtain
C—puXt—A*y=0

= Denote S = uX !, ie., XS = pul. Then, the FOC can be written as

AX =b
A*'y+S5=C
XS = pul

with X, S € §7% ..

32



Newton direction

The differentiation in the above system is a nontrivial operation. The direction is the solution
of the system:

A 0 0 AX &
0 A T || Ay | = 1| &
p(XTexY 0 I AS £,

We introduce a useful notation P ® @ for n x n matrices P and @ is the Kronecker product.
This defines a linear operator from $” to $™ given by

(PoQ)U = - (PUQT +QUPT) .

N | =

38]



Interior point methods bird-view

= Logarithmic barrier functions for SOCP and SDP Self-concordant barriers
= polynomial complexity (predictable behaviour)

= Unified view of optimization
= from LP via QP to NLP, SOCP and SDP

= Efficiency

= good for SOCP

= problematic for SDP because solving the problem of size n involves linear
algebra operations in dimension n?

= and this requires ’Tl,() flops!
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Thanks for your attention!

Check my webpage
https://lrsantosll.github.io.

O3y @lrsantosiil

¥ 1.r.santos@ufsc.br / lrsantos11@gmail.com
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