CME 307 / MS&E 311: Optimization

Least squares

Professor Udell

Management Science and Engineering
Stanford

May 7, 2023

1/32

Announcements

» 1:30pm Friday 4/14: team formation in Thornton 110
» homework 1 out, due Friday 4/21

2/32

Linear system

find x € R" such that
Ax=b

given design matrix A € R™*", righthand side (rhs) b € R”

how to solve?

» factor and solve
> QR
» singular value decomposition (SVD)
> Cholesky (for symmetric A)

» iterative methods

> conjugate gradient (CG) (for symmetric A)
P iterative refinement

we will talk about QR, CG, and iterative refinement

3/32

The SVD and the pseudoinverse

if r = Rank(A) and A= UZVT is the SVD of A,

» U € R™ is orthogonal: UTU = |,
> ¥ e R is diagonal and nonnegative
» V € R™" is orthogonal: VTV = |,

we can write the pseudoinverse AT = VX—1yT

> if x € span(V), ATAx = x

4/32

Considerations in choosing a method

sparse or dense A?
symmetric A or rectangular problem?
conditioning of A?

vvyyvyy

one problem, or many righthand sides b with the same
design matrix A?

symmetric psd | rectangular
direct Cholesky QR
indirect CG LSQR

Table: Methods for solving linear systems

» direct methods get accurate solutions in O(n?) flops

» indirect methods get ok solution in a small number of

matvecs
5/32

Optimality condition for least squares is a linear

system

given A€ R™" y € R™. find x to solve
minimize ||Ax — b||%.

to solve, take gradient, set to 0. solution x satisfies normal
equations
ATAx = ATb.

a linear system!

» AT A symmetric positive semidefinite

» normal equations always have a solution (why?)

6/32

QR

Outline

7/32

How to solve a linear system?

never form the inverse explicitly: numerically unstable!

Corollary: never type inv(A’*A) or pinv(A’*A) to solve the
normal equations.

8/32

How to solve a linear system?

never form the inverse explicitly: numerically unstable!

Corollary: never type inv(A’*A) or pinv(A’*A) to solve the
normal equations.

Instead: compute the inverse using easier matrices to invert, like

» orthogonal matrix Q:
a=Qb < Q'a=0b

» (upper) triangular matrix R:
if a= Rb, can find b given R and a by solving sequence of
simple, stable equations.

8/32

The QR factorization

every matrix A can be written using QR decomposition as
A=QR
» Q € R™*" has orthogonal columns: QT Q = I,
» R e R™" is upper triangular: Rjj =0 for i > j
» diagonal of R € R™" is positive: R; >0fori=1,...,n
» this factorization always exists and is unique

(proof by Gram-Schmidt construction)

can compute QR factorization of X in 2mn? flops

9/32

The QR factorization

every matrix A can be written using QR decomposition as
A=QR

» Q € R™*" has orthogonal columns: QT Q = I,
» R e R™" is upper triangular: Rjj =0 for i > j
» diagonal of R € R™" is positive: R; >0fori=1,...,n

» this factorization always exists and is unique
(proof by Gram-Schmidt construction)

can compute QR factorization of X in 2mn? flops

use LinearAlgebra.qr:
QR = qr(X)
advantage of QR: it's easy to invert R!

9/32

QR to solve linear system

use QR to solve linear system Ax = b: if A= QR,

Ax = b
x = R'Q"b

10/32

QR to solve linear system

use QR to solve linear system Ax = b: if A= QR,

Ax = b
x = R'Q"b

Q: What happens if we apply this method to solve an infeasible
system with m > n?

10/32

QR to solve linear system

use QR to solve linear system Ax = b: if A= QR,

Ax = b
x = R'Q"b

Q: What happens if we apply this method to solve an infeasible
system with m > n?
A: decompose b = bl + b where bl € span(A); QR solves

10/32

QR for least squares

use QR to solve least squares: if A = QR,

AT Ax
(QR)" QRx
R"Q" QRx

RT Rx

Rx

X

ATb
(QR)'b
RTQ'b
R'Q"b
Qb
RIQTh

11/32

Computational considerations

use QR factorization to solve Ax = b

» compute QR factorization of A (2mn? flops)
» to compute x = R1QTh
> formz=Q'b (2mn flops)
> compute x = R~z by back-substitution (n? flops)

12/32

Computational considerations

use QR factorization to solve Ax = b

» compute QR factorization of A (2mn? flops)
» to compute x = R1QTh
> formz=Q'b (2mn flops)
> compute x = R~z by back-substitution (n? flops)

in julia (or matlab), the backslash operator solves least-squares
efficiently (usually, using QR)

x=A\ b

in python, use numpy.lstsq

12/32

Demo: QR

https:
//github.com/stanford-cme-307 /demos/blob/main/Isq.ipynb

13/32

https://github.com/stanford-cme-307/demos/blob/main/lsq.ipynb
https://github.com/stanford-cme-307/demos/blob/main/lsq.ipynb

Sparse QR

complexity of QR depends on the sparsity of Q and R:

» compute QR factorization of A (77 flops)
> to compute x = R"1Q"h
> formz=Q'b (nnz(Q) flops)

> compute x = R™1z by back-substitution (nnz(R) flops)

14/32

Q-less QR

during QR, can compute Q' b essentially for free!

» compute QR of [A b].

15/32

Q-less QR

during QR, can compute Q' b essentially for free!

» compute QR of [A b].

or compute it afterwards without forming Q:

ATb (QRY'b=RTQ"b
RIATh = Qb

15/32

Cholesky and QR

consider Gram matrix G = ATA = 0. if A= QR,
G=R'Q"TQR=R'R

this construction gives Cholesky factorization of a spd matrix
G

» factors spd matrix into triangular matrices

» Cholesky factors of X X have same structure as R

16 /32

Sparse QR: exercise

» can you guess the sparsity of R given sparsity of A?
» can you change sparity of R by permuting columns of A?

17/32

Sparse QR: exercise

» can you guess the sparsity of R given sparsity of A?
» can you change sparity of R by permuting columns of A?

use ‘colamd’ in Matlab, equivalents in Python and julia

17/32

Chordal fill-in

to analyze fill-in

» consider spd matrix, for simplicity
» interpret matrix as directed graph
» form clique tree

» identify fill-in

e 0o o e o 0 ¢
° e e o0 g

Figure 4.1: Left. Filled graph with 9 vertices. The number next to each vertex is
the index o~ (v). Right. Array representation of the same graph.

source: VA15,

httne: / /www <ceac 11cla edir/ vandenbhe /publicatione /chordaledn ndf

18/32

Outline

Conjugate gradient

19/32

Conjugate gradients

symmetric positive semidefinite system of equations

Ax = b, A e R™"N, A=A" =0

20/32

Conjugate gradients

symmetric positive semidefinite system of equations
Ax=b, ~AcR™" A=A" >0

why use conjugate gradients?

» uses only matrix-vector multiplies with A

» useful for structured (from PDE or graph) or sparse
matrices, easy to parallelize, ...

most useful for problems with n > 10° or more
converges exactly in n iterations

converges approximately much faster

vvyyy

quick-and-dirty solve is appropriate inside inner loop of
optimization algo

20/32

Conjugate gradients

symmetric positive semidefinite system of equations
Ax=b, ~AcR™" A=A" >0

why use conjugate gradients?

» uses only matrix-vector multiplies with A

» useful for structured (from PDE or graph) or sparse
matrices, easy to parallelize, ...

most useful for problems with n > 10° or more
converges exactly in n iterations

converges approximately much faster

vvyyy

quick-and-dirty solve is appropriate inside inner loop of
optimization algo

other variants for indefinite (MINRES) or nonsymmetric
matrices (GMRES)

20/32

Iterative methods for least squares

define
> (convex) objective f(x) = (1/2)x"Ax — x b
> gradient Vf(x) = Ax — b
» condition number k(A) = A1(A)/A\n(A)
> A-norm [[x[|% = xT Ax
» bound R > ||x|| on norm of solution x,
» goal: find apx solution within accuracy f(x) — f(x.) <€

21/32

Iterative methods for least squares

define
> (convex) objective f(x) = (1/2)x"Ax — x b
> gradient Vf(x) = Ax — b
» condition number k(A) = A1(A)/A\n(A)
> A-norm [[x[|% = xT Ax
» bound R > ||x|| on norm of solution x,
» goal: find apx solution within accuracy f(x) — f(x.) <€

how many iterations (matvecs) required?

21/32

Iterative methods for least squares

define

> (convex) objective f(x) = (1/2)x"Ax — x b

> gradient Vf(x) = Ax — b

» condition number k(A) = A1(A)/A\n(A)

> A-norm [[x[|% = xT Ax

» bound R > ||x|| on norm of solution x,

» goal: find apx solution within accuracy f(x) — f(x.) <€
how many iterations (matvecs) required?

» conjugate gradient

> O (Vrlog(y))

21/32

Iterative methods for least squares

define
> (convex) objective f(x) = (1/2)x"Ax — x b
gradient Vf(x) = Ax — b
condition number k(A) = \1(A)/An(A)
A-norm [|x[|% = xT Ax
bound R > ||x.|| on norm of solution x,
» goal: find apx solution within accuracy f(x) — f(x.) <€

| 4
| 4
>
>

how many iterations (matvecs) required?

» conjugate gradient

> O (Vrlog(y))
» gradient descent (GD)

> O(rlog(1/e€))

21/32

Iterative methods for least squares

define

> (convex) objective f(x) = (1/2)x"Ax — x b

gradient Vf(x) = Ax — b

condition number k(A) = \1(A)/An(A)

A-norm [|x[|% = xT Ax

bound R > ||x.|| on norm of solution x,

» goal: find apx solution within accuracy f(x) — f(x.) <€

| 4
| 4
>
>

how many iterations (matvecs) required?

» conjugate gradient

> O (Vrlog(y))
» gradient descent (GD)

> O (rlog(1/e))
» accelerated gradient descent

2 .
> 0 (\/Elog(%)) more generalizable, but more parameters
to tune

source: Bubeck, - Karimi, Nutini, and Schmidt,

21/32

Residual

define residual r = b — Ax at putative solution x

> r=—-Vf(x) = A(x — x)

22/32

Residual

define residual r = b — Ax at putative solution x
> r=—-Vf(x) = A(x — x)
measures of error:

» objective function f(x) — f(x;)
» norm of residual ||r||
» norm of gradient ||V f(x)|

» in terms of r, can compute error in objective

F(x) = f(x) = lIx = xlla
1
= E(X — X*)TA(X — X4)
1 _
— 1A

= [Irlla-s

22/32

Krylov subspace

the Krylov subspace of dimension k is

Ky = span{b, Ab, ..., A" 1b} = span{pi(A)b | degree(p) < k}

23/32

Krylov subspace

the Krylov subspace of dimension k is

Ky = span{b, Ab, ..., Ak"1b} = span{p,(A)b | degree(p) < k}

the iterates of the Krylov sequence x(1), x(?) ... minimize
objective over successive Krylov subspaces

x) = argmin f(x) = argmin ||Ax — b|| = argmin ||x — x.|| A
XEK xEL x€Ek

the CG algorithm generates the Krylov sequence

23/32

Properties of Krylov sequence

> f(x(ktD)) < F(x(K)) (but ||r|| can increase)
| 4 X(") = X,
> x(K) = p,(A)b, where py is a polynomial with degree < k

» less obvious: there is a two-term recurrence

24/32

Properties of Krylov sequence

> f(x(ktD)) < F(x(K)) (but ||r|| can increase)
| 4 X(") = X,
> x(K) = p,(A)b, where py is a polynomial with degree < k

» less obvious: there is a two-term recurrence

» «y and By are determined by the CG algorithm

24/32

Properties of Krylov sequence

> f(x(ktD)) < F(x(K)) (but ||r|| can increase)
| 4 X(") = X,
> x(K) = p,(A)b, where py is a polynomial with degree < k

» less obvious: there is a two-term recurrence
» «y and By are determined by the CG algorithm
» can derive recurrence from optimality conditions:

each new iterate x(k*1) must have gradient (residual)
orthogonal to Ky

24/32

Coordinate descent does not solve in n iterations

Figure5.2 Successive minimization along coordinate axes does not find the solution
in n iterations, for a general convex quadratic.

source: NWO04
25 /32

CG converges in Rank(A) iterations

write (don't compute!) SVD of A= VAV with

» r = Rank(A)
» A € R" x r diagonal and positive
> V € R™": orthonormal: VTV =1,

26/32

CG converges in Rank(A) iterations

write (don't compute!) SVD of A= VAV with

» r = Rank(A)
» A € R" x r diagonal and positive
> V € R™": orthonormal: VTV =1,

characteristic polynomial of A:
£(s) =det(sl, —A) = (s—XM1)---(s=X\)=s"4+as" 1+ +a,
Cayley-Hamilton theorem
EN =0 = N+aN 4 tal
ANt = —(1/a)N TP N T aal)

26/32

CG converges in Rank(A) iterations

write (don't compute!) SVD of A= VAV with

» r = Rank(A)
» A € R" x r diagonal and positive
> V € R™": orthonormal: VTV =1,

characteristic polynomial of A:
£(s) =det(sl, —A) = (s—XM1)---(s=X\)=s"4+as" 1+ +a,
Cayley-Hamilton theorem
EN)=0 = N4+auN 14+ +al
At = —(1/a) N+ aN T2 a)

write A= = VA1V in terms of this decomposition:

A= VAIVT = = —(1/a)(VAIVT +a VA2V T 4.

= —(1/a) A A2+ fa,)
in particular, x, = A"1b € K,

+ oy

26/32

Outline

Preconditioned CG

27/32

Matrix square root

A € 8" has a square root Al/2 ¢ S:

» if A= UAU" is the eigendecomposition of A,
> then AY/2 = UNY2UT

so A= Al/2A1/2,

28/32

Preconditioning CG

for any P > 0,

Ax=b <= P 12ax=p 12
p=12ap1/2; = p=1/2p

where x = P~1/27,

29/32

Preconditioning CG

for any P > 0,

Ax=b <= P 12ax=p 12
p=12ap1/2; = p=1/2p

where x = P~1/27,

» preconditioning works well when k(P~1/2AP~1/2) <« k(A)

29/32

Preconditioning CG

for any P > 0,

Ax=b <= P 12ax=p 12
p=12ap1/2; = p=1/2p

where x = P~1/2z,
» preconditioning works well when k(P~1/2AP~1/2) <« k(A)

how to precondition?

» common heuristic: Jacobi preconditioning P = diag(A)

» incomplete Cholesky (best for structured sparsity)

29/32

An optimal low-rank preconditioner

» suppose |A|s = VoAV, is a best rank-s apx to A € St.
» the best preconditioner using this information is

1
P, = —V.(A)V.S + (I - VuV)
)\s+1

—— before preconditioning
—— after preconditioning

30/32

Outline

Iterative refinement

31/32

Iterative refinement

want to solve Ax = b.

given approximate solution Ax(®) ~ b, for k =1,. ..,

> compute residual r(k) = p — Ax(K)
> use any method to solve A§(K) = r(k)
b (k1) — () 4 50

32/32

	QR
	Conjugate gradient
	Preconditioned CG
	Iterative refinement

