
CME 307 / MS&E 311: Optimization

Least squares

Professor Udell

Management Science and Engineering
Stanford

May 7, 2023

1 / 32

Announcements

▶ 1:30pm Friday 4/14: team formation in Thornton 110

▶ homework 1 out, due Friday 4/21

2 / 32

Linear system

find x ∈ Rn such that
Ax = b

given design matrix A ∈ Rm×n, righthand side (rhs) b ∈ Rm

how to solve?

▶ factor and solve
▶ QR
▶ singular value decomposition (SVD)
▶ Cholesky (for symmetric A)

▶ iterative methods
▶ conjugate gradient (CG) (for symmetric A)
▶ iterative refinement

we will talk about QR, CG, and iterative refinement

3 / 32

The SVD and the pseudoinverse

if r = Rank(A) and A = UΣV T is the SVD of A,

▶ U ∈ Rm×r is orthogonal: UTU = Ir
▶ Σ ∈ Rr×r

+ is diagonal and nonnegative

▶ V ∈ Rn×r is orthogonal: V TV = Ir

we can write the pseudoinverse A† = VΣ−1UT

▶ if x ∈ span(V), A†Ax = x

4 / 32

Considerations in choosing a method

▶ sparse or dense A?

▶ symmetric A or rectangular problem?

▶ conditioning of A?

▶ one problem, or many righthand sides b with the same
design matrix A?

symmetric psd rectangular
direct Cholesky QR
indirect CG LSQR

Table: Methods for solving linear systems

▶ direct methods get accurate solutions in O(n3) flops

▶ indirect methods get ok solution in a small number of
matvecs

5 / 32

Optimality condition for least squares is a linear

system

given A ∈ Rm×n, y ∈ Rm. find x to solve

minimize ∥Ax − b∥2.

to solve, take gradient, set to 0. solution x satisfies normal
equations

A⊤Ax = A⊤b.

a linear system!

▶ A⊤A symmetric positive semidefinite

▶ normal equations always have a solution (why?)

6 / 32

Outline

QR

Conjugate gradient

Preconditioned CG

Iterative refinement

7 / 32

How to solve a linear system?

never form the inverse explicitly: numerically unstable!

Corollary: never type inv(A’*A) or pinv(A’*A) to solve the
normal equations.

Instead: compute the inverse using easier matrices to invert, like

▶ orthogonal matrix Q:

a = Qb ⇐⇒ Q⊤a = b

▶ (upper) triangular matrix R:
if a = Rb, can find b given R and a by solving sequence of
simple, stable equations.

8 / 32

How to solve a linear system?

never form the inverse explicitly: numerically unstable!

Corollary: never type inv(A’*A) or pinv(A’*A) to solve the
normal equations.

Instead: compute the inverse using easier matrices to invert, like

▶ orthogonal matrix Q:

a = Qb ⇐⇒ Q⊤a = b

▶ (upper) triangular matrix R:
if a = Rb, can find b given R and a by solving sequence of
simple, stable equations.

8 / 32

The QR factorization

every matrix A can be written using QR decomposition as
A = QR

▶ Q ∈ Rm×n has orthogonal columns: Q⊤Q = In
▶ R ∈ Rn×n is upper triangular: Rij = 0 for i > j

▶ diagonal of R ∈ Rn×n is positive: Rii > 0 for i = 1, . . . , n

▶ this factorization always exists and is unique
(proof by Gram-Schmidt construction)

can compute QR factorization of X in 2mn2 flops

use LinearAlgebra.qr:

Q,R = qr (X)

advantage of QR: it’s easy to invert R!

9 / 32

The QR factorization

every matrix A can be written using QR decomposition as
A = QR

▶ Q ∈ Rm×n has orthogonal columns: Q⊤Q = In
▶ R ∈ Rn×n is upper triangular: Rij = 0 for i > j

▶ diagonal of R ∈ Rn×n is positive: Rii > 0 for i = 1, . . . , n

▶ this factorization always exists and is unique
(proof by Gram-Schmidt construction)

can compute QR factorization of X in 2mn2 flops

use LinearAlgebra.qr:

Q,R = qr (X)

advantage of QR: it’s easy to invert R!

9 / 32

QR to solve linear system

use QR to solve linear system Ax = b: if A = QR,

Ax = b

x = R−1Q⊤b

Q: What happens if we apply this method to solve an infeasible
system with m > n?
A: decompose b = b∥ + b⊥ where b∥ ∈ span(A); QR solves
Ax = b∥

10 / 32

QR to solve linear system

use QR to solve linear system Ax = b: if A = QR,

Ax = b

x = R−1Q⊤b

Q: What happens if we apply this method to solve an infeasible
system with m > n?

A: decompose b = b∥ + b⊥ where b∥ ∈ span(A); QR solves
Ax = b∥

10 / 32

QR to solve linear system

use QR to solve linear system Ax = b: if A = QR,

Ax = b

x = R−1Q⊤b

Q: What happens if we apply this method to solve an infeasible
system with m > n?
A: decompose b = b∥ + b⊥ where b∥ ∈ span(A); QR solves
Ax = b∥

10 / 32

QR for least squares

use QR to solve least squares: if A = QR,

A⊤Ax = A⊤b

(QR)⊤QRx = (QR)⊤b

R⊤Q⊤QRx = R⊤Q⊤b

R⊤Rx = R⊤Q⊤b

Rx = Q⊤b

x = R−1Q⊤b

11 / 32

Computational considerations

use QR factorization to solve Ax = b

▶ compute QR factorization of A (2mn2 flops)

▶ to compute x = R−1Q⊤b
▶ form z = Q⊤b (2mn flops)
▶ compute x = R−1z by back-substitution (n2 flops)

in julia (or matlab), the backslash operator solves least-squares
efficiently (usually, using QR)

x = A \ b

in python, use numpy.lstsq

12 / 32

Computational considerations

use QR factorization to solve Ax = b

▶ compute QR factorization of A (2mn2 flops)

▶ to compute x = R−1Q⊤b
▶ form z = Q⊤b (2mn flops)
▶ compute x = R−1z by back-substitution (n2 flops)

in julia (or matlab), the backslash operator solves least-squares
efficiently (usually, using QR)

x = A \ b

in python, use numpy.lstsq

12 / 32

Demo: QR

https:
//github.com/stanford-cme-307/demos/blob/main/lsq.ipynb

13 / 32

https://github.com/stanford-cme-307/demos/blob/main/lsq.ipynb
https://github.com/stanford-cme-307/demos/blob/main/lsq.ipynb

Sparse QR

complexity of QR depends on the sparsity of Q and R:

▶ compute QR factorization of A (?? flops)

▶ to compute x = R−1Q⊤b
▶ form z = Q⊤b (nnz(Q) flops)
▶ compute x = R−1z by back-substitution (nnz(R) flops)

14 / 32

Q-less QR

during QR, can compute Q⊤b essentially for free!

▶ compute QR of
[
A b

]
.

or compute it afterwards without forming Q:

A⊤b = (QR)⊤b = R⊤Q⊤b

R−1A⊤b = Q⊤b

15 / 32

Q-less QR

during QR, can compute Q⊤b essentially for free!

▶ compute QR of
[
A b

]
.

or compute it afterwards without forming Q:

A⊤b = (QR)⊤b = R⊤Q⊤b

R−1A⊤b = Q⊤b

15 / 32

Cholesky and QR

consider Gram matrix G = A⊤A ⪰ 0. if A = QR,

G = R⊤Q⊤QR = R⊤R

this construction gives Cholesky factorization of a spd matrix
G

▶ factors spd matrix into triangular matrices

▶ Cholesky factors of X⊤X have same structure as R

16 / 32

Sparse QR: exercise

▶ can you guess the sparsity of R given sparsity of A?

▶ can you change sparity of R by permuting columns of A?

use ‘colamd‘ in Matlab, equivalents in Python and julia

17 / 32

Sparse QR: exercise

▶ can you guess the sparsity of R given sparsity of A?

▶ can you change sparity of R by permuting columns of A?

use ‘colamd‘ in Matlab, equivalents in Python and julia

17 / 32

Chordal fill-in

to analyze fill-in

▶ consider spd matrix, for simplicity
▶ interpret matrix as directed graph
▶ form clique tree
▶ identify fill-in

source: VA15,
https://www.seas.ucla.edu/ vandenbe/publications/chordalsdp.pdf 18 / 32

Outline

QR

Conjugate gradient

Preconditioned CG

Iterative refinement

19 / 32

Conjugate gradients

symmetric positive semidefinite system of equations

Ax = b, A ∈ Rn×n, A = A⊤ ⪰ 0

why use conjugate gradients?

▶ uses only matrix-vector multiplies with A
▶ useful for structured (from PDE or graph) or sparse

matrices, easy to parallelize, . . .

▶ most useful for problems with n > 105 or more

▶ converges exactly in n iterations

▶ converges approximately much faster

▶ quick-and-dirty solve is appropriate inside inner loop of
optimization algo

other variants for indefinite (MINRES) or nonsymmetric
matrices (GMRES)

20 / 32

Conjugate gradients

symmetric positive semidefinite system of equations

Ax = b, A ∈ Rn×n, A = A⊤ ⪰ 0

why use conjugate gradients?

▶ uses only matrix-vector multiplies with A
▶ useful for structured (from PDE or graph) or sparse

matrices, easy to parallelize, . . .

▶ most useful for problems with n > 105 or more

▶ converges exactly in n iterations

▶ converges approximately much faster

▶ quick-and-dirty solve is appropriate inside inner loop of
optimization algo

other variants for indefinite (MINRES) or nonsymmetric
matrices (GMRES)

20 / 32

Conjugate gradients

symmetric positive semidefinite system of equations

Ax = b, A ∈ Rn×n, A = A⊤ ⪰ 0

why use conjugate gradients?

▶ uses only matrix-vector multiplies with A
▶ useful for structured (from PDE or graph) or sparse

matrices, easy to parallelize, . . .

▶ most useful for problems with n > 105 or more

▶ converges exactly in n iterations

▶ converges approximately much faster

▶ quick-and-dirty solve is appropriate inside inner loop of
optimization algo

other variants for indefinite (MINRES) or nonsymmetric
matrices (GMRES)

20 / 32

Iterative methods for least squares

define

▶ (convex) objective f (x) = (1/2)x⊤Ax − x⊤b
▶ gradient ∇f (x) = Ax − b
▶ condition number κ(A) = λ1(A)/λn(A)
▶ A-norm ∥x∥2A = xTAx
▶ bound R ≥ ∥x⋆∥ on norm of solution x⋆
▶ goal: find apx solution within accuracy f (x)− f (x⋆) ≤ ϵ

how many iterations (matvecs) required?

▶ conjugate gradient
▶ O

(√
κ log(1ϵ)

)
▶ gradient descent (GD)

▶ O (κ log(1/ϵ))
▶ accelerated gradient descent

▶ O
(√

κ log(R
2

ϵ)
)
more generalizable, but more parameters

to tune

source: Bubeck, 2014; Karimi, Nutini, and Schmidt, 2016

21 / 32

Iterative methods for least squares

define

▶ (convex) objective f (x) = (1/2)x⊤Ax − x⊤b
▶ gradient ∇f (x) = Ax − b
▶ condition number κ(A) = λ1(A)/λn(A)
▶ A-norm ∥x∥2A = xTAx
▶ bound R ≥ ∥x⋆∥ on norm of solution x⋆
▶ goal: find apx solution within accuracy f (x)− f (x⋆) ≤ ϵ

how many iterations (matvecs) required?

▶ conjugate gradient
▶ O

(√
κ log(1ϵ)

)
▶ gradient descent (GD)

▶ O (κ log(1/ϵ))
▶ accelerated gradient descent

▶ O
(√

κ log(R
2

ϵ)
)
more generalizable, but more parameters

to tune

source: Bubeck, 2014; Karimi, Nutini, and Schmidt, 2016

21 / 32

Iterative methods for least squares

define

▶ (convex) objective f (x) = (1/2)x⊤Ax − x⊤b
▶ gradient ∇f (x) = Ax − b
▶ condition number κ(A) = λ1(A)/λn(A)
▶ A-norm ∥x∥2A = xTAx
▶ bound R ≥ ∥x⋆∥ on norm of solution x⋆
▶ goal: find apx solution within accuracy f (x)− f (x⋆) ≤ ϵ

how many iterations (matvecs) required?

▶ conjugate gradient
▶ O

(√
κ log(1ϵ)

)

▶ gradient descent (GD)
▶ O (κ log(1/ϵ))

▶ accelerated gradient descent
▶ O

(√
κ log(R

2

ϵ)
)
more generalizable, but more parameters

to tune

source: Bubeck, 2014; Karimi, Nutini, and Schmidt, 2016

21 / 32

Iterative methods for least squares

define

▶ (convex) objective f (x) = (1/2)x⊤Ax − x⊤b
▶ gradient ∇f (x) = Ax − b
▶ condition number κ(A) = λ1(A)/λn(A)
▶ A-norm ∥x∥2A = xTAx
▶ bound R ≥ ∥x⋆∥ on norm of solution x⋆
▶ goal: find apx solution within accuracy f (x)− f (x⋆) ≤ ϵ

how many iterations (matvecs) required?

▶ conjugate gradient
▶ O

(√
κ log(1ϵ)

)
▶ gradient descent (GD)

▶ O (κ log(1/ϵ))

▶ accelerated gradient descent
▶ O

(√
κ log(R

2

ϵ)
)
more generalizable, but more parameters

to tune

source: Bubeck, 2014; Karimi, Nutini, and Schmidt, 2016

21 / 32

Iterative methods for least squares

define

▶ (convex) objective f (x) = (1/2)x⊤Ax − x⊤b
▶ gradient ∇f (x) = Ax − b
▶ condition number κ(A) = λ1(A)/λn(A)
▶ A-norm ∥x∥2A = xTAx
▶ bound R ≥ ∥x⋆∥ on norm of solution x⋆
▶ goal: find apx solution within accuracy f (x)− f (x⋆) ≤ ϵ

how many iterations (matvecs) required?

▶ conjugate gradient
▶ O

(√
κ log(1ϵ)

)
▶ gradient descent (GD)

▶ O (κ log(1/ϵ))
▶ accelerated gradient descent

▶ O
(√

κ log(R
2

ϵ)
)
more generalizable, but more parameters

to tune

source: Bubeck, 2014; Karimi, Nutini, and Schmidt, 2016
21 / 32

Residual

define residual r = b − Ax at putative solution x

▶ r = −∇f (x) = A(x⋆ − x)

measures of error:

▶ objective function f (x)− f (x⋆)

▶ norm of residual ∥r∥
▶ norm of gradient ∥∇f (x)∥
▶ in terms of r , can compute error in objective

f (x)− f (x⋆) = ∥x − x⋆∥A

=
1

2
(x − x⋆)

⊤A(x − x⋆)

=
1

2
(r)⊤A−1(r)

= ∥r∥A−1

22 / 32

Residual

define residual r = b − Ax at putative solution x

▶ r = −∇f (x) = A(x⋆ − x)

measures of error:

▶ objective function f (x)− f (x⋆)

▶ norm of residual ∥r∥
▶ norm of gradient ∥∇f (x)∥
▶ in terms of r , can compute error in objective

f (x)− f (x⋆) = ∥x − x⋆∥A

=
1

2
(x − x⋆)

⊤A(x − x⋆)

=
1

2
(r)⊤A−1(r)

= ∥r∥A−1

22 / 32

Krylov subspace

the Krylov subspace of dimension k is

Kk = span{b,Ab, . . . ,Ak−1b} = span{pk(A)b | degree(p) < k}

the iterates of the Krylov sequence x (1), x (2), . . . , minimize
objective over successive Krylov subspaces

x (k) = argmin
x∈Kk

f (x) = argmin
x∈Kk

∥Ax − b∥ = argmin
x∈Kk

∥x − x⋆∥A

the CG algorithm generates the Krylov sequence

23 / 32

Krylov subspace

the Krylov subspace of dimension k is

Kk = span{b,Ab, . . . ,Ak−1b} = span{pk(A)b | degree(p) < k}

the iterates of the Krylov sequence x (1), x (2), . . . , minimize
objective over successive Krylov subspaces

x (k) = argmin
x∈Kk

f (x) = argmin
x∈Kk

∥Ax − b∥ = argmin
x∈Kk

∥x − x⋆∥A

the CG algorithm generates the Krylov sequence

23 / 32

Properties of Krylov sequence

▶ f (x (k+1)) ≤ f (x (k)) (but ∥r∥ can increase)

▶ x (n) = x⋆
▶ x (k) = pk(A)b, where pk is a polynomial with degree < k

▶ less obvious: there is a two-term recurrence

x (k+1) = x (k)+αkp
(k) where p(k) = −r (k)+βkp

(k−1)

▶ αk and βk are determined by the CG algorithm
▶ can derive recurrence from optimality conditions:

each new iterate x (k+1) must have gradient (residual)
orthogonal to Kk

24 / 32

Properties of Krylov sequence

▶ f (x (k+1)) ≤ f (x (k)) (but ∥r∥ can increase)

▶ x (n) = x⋆
▶ x (k) = pk(A)b, where pk is a polynomial with degree < k

▶ less obvious: there is a two-term recurrence

x (k+1) = x (k)+αkp
(k) where p(k) = −r (k)+βkp

(k−1)

▶ αk and βk are determined by the CG algorithm

▶ can derive recurrence from optimality conditions:
each new iterate x (k+1) must have gradient (residual)
orthogonal to Kk

24 / 32

Properties of Krylov sequence

▶ f (x (k+1)) ≤ f (x (k)) (but ∥r∥ can increase)

▶ x (n) = x⋆
▶ x (k) = pk(A)b, where pk is a polynomial with degree < k

▶ less obvious: there is a two-term recurrence

x (k+1) = x (k)+αkp
(k) where p(k) = −r (k)+βkp

(k−1)

▶ αk and βk are determined by the CG algorithm
▶ can derive recurrence from optimality conditions:

each new iterate x (k+1) must have gradient (residual)
orthogonal to Kk

24 / 32

Coordinate descent does not solve in n iterations

source: NW04
25 / 32

CG converges in Rank(A) iterations

write (don’t compute!) SVD of A = VΛV⊤ with

▶ r = Rank(A)
▶ Λ ∈ Rr × r diagonal and positive
▶ V ∈ Rn×r : orthonormal: V⊤V = Ir

characteristic polynomial of Λ:

ξ(s) = det(sIr −Λ) = (s−λ1) · · · (s−λr) = sr +αsr−1+ · · ·+αr

Cayley-Hamilton theorem

ξ(Λ) = 0 = Λr + α1Λ
r−1 + · · ·+ αr Ir

Λ−1 = −(1/αr)(Λ
r−1 + α1Λ

r−2 + · · ·+ αr−1Ir)

write A−1 = VΛ−1V⊤ in terms of this decomposition:

A−1 = VΛ−1V⊤ = = −(1/αr)(VΛr−1V⊤ + α1VΛr−2V⊤ + · · ·+ αr−1VV
⊤)

= −(1/αr)(A
r−1 + α1A

r−2 + · · ·+ αr−1I)

in particular, x⋆ = A−1b ∈ Kr

26 / 32

CG converges in Rank(A) iterations

write (don’t compute!) SVD of A = VΛV⊤ with

▶ r = Rank(A)
▶ Λ ∈ Rr × r diagonal and positive
▶ V ∈ Rn×r : orthonormal: V⊤V = Ir

characteristic polynomial of Λ:

ξ(s) = det(sIr −Λ) = (s−λ1) · · · (s−λr) = sr +αsr−1+ · · ·+αr

Cayley-Hamilton theorem

ξ(Λ) = 0 = Λr + α1Λ
r−1 + · · ·+ αr Ir

Λ−1 = −(1/αr)(Λ
r−1 + α1Λ

r−2 + · · ·+ αr−1Ir)

write A−1 = VΛ−1V⊤ in terms of this decomposition:

A−1 = VΛ−1V⊤ = = −(1/αr)(VΛr−1V⊤ + α1VΛr−2V⊤ + · · ·+ αr−1VV
⊤)

= −(1/αr)(A
r−1 + α1A

r−2 + · · ·+ αr−1I)

in particular, x⋆ = A−1b ∈ Kr

26 / 32

CG converges in Rank(A) iterations

write (don’t compute!) SVD of A = VΛV⊤ with

▶ r = Rank(A)
▶ Λ ∈ Rr × r diagonal and positive
▶ V ∈ Rn×r : orthonormal: V⊤V = Ir

characteristic polynomial of Λ:

ξ(s) = det(sIr −Λ) = (s−λ1) · · · (s−λr) = sr +αsr−1+ · · ·+αr

Cayley-Hamilton theorem

ξ(Λ) = 0 = Λr + α1Λ
r−1 + · · ·+ αr Ir

Λ−1 = −(1/αr)(Λ
r−1 + α1Λ

r−2 + · · ·+ αr−1Ir)

write A−1 = VΛ−1V⊤ in terms of this decomposition:

A−1 = VΛ−1V⊤ = = −(1/αr)(VΛr−1V⊤ + α1VΛr−2V⊤ + · · ·+ αr−1VV
⊤)

= −(1/αr)(A
r−1 + α1A

r−2 + · · ·+ αr−1I)

in particular, x⋆ = A−1b ∈ Kr
26 / 32

Outline

QR

Conjugate gradient

Preconditioned CG

Iterative refinement

27 / 32

Matrix square root

A ∈ Sn
+ has a square root A1/2 ∈ Sn

+:

▶ if A = UΛU⊤ is the eigendecomposition of A,

▶ then A1/2 = UΛ1/2U⊤

so A = A1/2A1/2.

28 / 32

Preconditioning CG

for any P ≻ 0,

Ax = b ⇐⇒ P−1/2Ax = P−1/2b

P−1/2AP−1/2z = P−1/2b

where x = P−1/2z .

▶ preconditioning works well when κ(P−1/2AP−1/2) ≪ κ(A)

how to precondition?

▶ common heuristic: Jacobi preconditioning P = diag(A)

▶ incomplete Cholesky (best for structured sparsity)

29 / 32

Preconditioning CG

for any P ≻ 0,

Ax = b ⇐⇒ P−1/2Ax = P−1/2b

P−1/2AP−1/2z = P−1/2b

where x = P−1/2z .

▶ preconditioning works well when κ(P−1/2AP−1/2) ≪ κ(A)

how to precondition?

▶ common heuristic: Jacobi preconditioning P = diag(A)

▶ incomplete Cholesky (best for structured sparsity)

29 / 32

Preconditioning CG

for any P ≻ 0,

Ax = b ⇐⇒ P−1/2Ax = P−1/2b

P−1/2AP−1/2z = P−1/2b

where x = P−1/2z .

▶ preconditioning works well when κ(P−1/2AP−1/2) ≪ κ(A)

how to precondition?

▶ common heuristic: Jacobi preconditioning P = diag(A)

▶ incomplete Cholesky (best for structured sparsity)

29 / 32

An optimal low-rank preconditioner

▶ suppose ⌊A⌋s = VsΛsV
T
s is a best rank-s apx to A ∈ Sn

+.

▶ the best preconditioner using this information is

P⋆ =
1

λs+1
Vs(Λs)V

T
s + (I − VsV

T
s)

i

i

before preconditioning
after preconditioning

30 / 32

Outline

QR

Conjugate gradient

Preconditioned CG

Iterative refinement

31 / 32

Iterative refinement

want to solve Ax = b.

given approximate solution Ax (0) ≈ b, for k = 1, . . .,

▶ compute residual r (k) = b − Ax (k)

▶ use any method to solve Aδ(k) = r (k)

▶ x (k+1) = x (k) + δ(k)

32 / 32

	QR
	Conjugate gradient
	Preconditioned CG
	Iterative refinement

