CME 307 / MS&E 311: Optimization # Low rank approximation for faster optimization Professor Udell Management Science and Engineering Stanford May 17, 2023 thesis: randNLA allows O(n) matvecs with $n \times n$ matrix $A \implies$ can speed up algorithms that use large matrices, thesis: randNLA allows O(n) matvecs with $n \times n$ matrix $A \implies$ can speed up algorithms that use large matrices, e.g., - 1. Nyström PCG to solve Ax = b - randomized low rank approximation as preconditioner thesis: randNLA allows O(n) matvecs with $n \times n$ matrix $A \implies$ can speed up algorithms that use large matrices, e.g., - 1. Nyström PCG to solve Ax = b - randomized low rank approximation as preconditioner thesis: randNLA allows O(n) matvecs with $n \times n$ matrix $A \implies$ can speed up algorithms that use large matrices, e.g., - 1. Nyström PCG to solve Ax = b - randomized low rank approximation as preconditioner - 2. NysADMM for composite optimization minimize f(Ax) + g(x), e.g., - lasso - regularized logistic regression - support vector machine randNLA beats SOTA solver for all these problems! thesis: randNLA allows O(n) matvecs with $n \times n$ matrix $A \implies$ can speed up algorithms that use large matrices, e.g., - 1. Nyström PCG to solve Ax = b - randomized low rank approximation as preconditioner - 2. NysADMM for composite optimization minimize f(Ax) + g(x), e.g., - lasso - regularized logistic regression - support vector machine randNLA beats SOTA solver for all these problems! - 3. SketchySGD for finite sum minimization $\sum_{i=1}^{n} f_i(x)$ low rank approximation for Newton system improves - robustness (vs first-order methods) and - speed (vs other quasi-Newton methods) thesis: randNLA allows O(n) matvecs with $n \times n$ matrix $A \implies$ can speed up algorithms that use large matrices, e.g., - 1. Nyström PCG to solve Ax = b - randomized low rank approximation as preconditioner - 2. NysADMM for composite optimization minimize f(Ax) + g(x), e.g., - lasso - regularized logistic regression - support vector machine randNLA beats SOTA solver for all these problems! - 3. SketchySGD for finite sum minimization $\sum_{i=1}^{n} f_i(x)$ low rank approximation for Newton system improves - robustness (vs first-order methods) and - speed (vs other quasi-Newton methods) even works for deep learning! #### **Outline** Low rank approximation Nyström PCG SketchySGD **ADMM** NysADMM #### Low rank approximation via eigenvalues given $A \in \mathbf{S}_+^n$ (symmetric positive definite), find the best rank-s approximation: ightharpoonup compute the eigenvalue decomposition $(O(n^3) \text{ flops})$ $$A = U \Lambda U^T$$ with $$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$, $\lambda_1 \ge \dots \ge \lambda_n$, $UU^T = U^T U = I_n$, truncate to top *s* eigenvector/value pairs: $$\hat{A} = U_s \Lambda_s U_s^T$$ with $$\Lambda_s = \operatorname{diag}(\lambda_1, \dots, \lambda_s)$$, $U_s \in \mathbf{R}^{n \times s}$ is first s columns of $U \in \mathbf{R}^{n \times n}$ so $U_s^T U_s = I_s$ #### Nyström approximation given $A \in \mathbf{S}_{+}^{n}$, approximate with the *Nyström method*: - ▶ choose any test matrix $\Omega \in \mathbb{R}^{n \times s}$, $1 \le s \le n$ - Nyström approximation of A wrt Ω is [Tropp et al. (2017)] $$A\langle\Omega\rangle = (A\Omega)(\Omega^T A\Omega)^{\dagger}(A\Omega)^T.$$ properties: - $ightharpoonup A\langle\Omega\rangle\in \mathbf{S}^n_+$ - ▶ $\operatorname{rank}(A\langle\Omega\rangle) \leq s$ - $ightharpoonup A\langle\Omega\rangle \leq A$ #### Efficient eigs via randomized NLA given $A \in \mathbf{S}_{+}^{n}$, find a good rank-s approximation: - ightharpoonup draw random Gaussian matrix $\Omega \in \mathbb{R}^{n \times s}$ - ightharpoonup compute randomized linear sketch $Y = A\Omega$. - ► form Nyström approximation $$\hat{A}_{\mathsf{nys}} = (A\Omega)(\Omega^T A\Omega)^{\dagger} (A\Omega)^T = Y(\Omega^T Y)^{\dagger} Y^T.$$ ▶ in practice, construct apx eigs $\hat{A} = V \hat{\Lambda} V^T$ using tall-skinny QR, small SVD ### Efficient eigs via randomized NLA given $A \in \mathbf{S}_{+}^{n}$, find a good rank-s approximation: - ightharpoonup draw random Gaussian matrix $\Omega \in \mathbb{R}^{n \times s}$ - ightharpoonup compute randomized linear sketch $Y = A\Omega$. - ► form Nyström approximation $$\hat{A}_{\mathsf{nys}} = (A\Omega)(\Omega^T A\Omega)^{\dagger} (A\Omega)^T = Y(\Omega^T Y)^{\dagger} Y^T.$$ ▶ in practice, construct apx eigs $\hat{A} = V \hat{\Lambda} V^T$ using tall-skinny QR, small SVD #### properties: - requires only matvecs with A, streaming ok - \blacktriangleright total computation: s matvecs + $O(ns^2)$ - \triangleright total storage: O(ns) - $ightharpoonup \hat{A}_{nys}$ is spd, $rank(\hat{A}_{nys}) \leq s$, and $\hat{A}_{nys} \leq A$ #### Randomized Nyström approximation: guarantees define the *p-stable rank* $$\operatorname{sr}_p(A) = \lambda_p^{-1} \sum_{j=p}^n \lambda_j$$ #### Randomized Nyström approximation: guarantees define the *p-stable rank* $\operatorname{sr}_p(A) = \lambda_p^{-1} \sum_{j=p}^n \lambda_j$ ## Theorem (Randomized Nyström approximation) Let $A \in \mathbf{S}_{+}^{n}$ with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Pick any $p \geq 2$ and set sketch size s = 2p - 1. Draw a Gaussian random test matrix $\Omega \in \mathbb{R}^{n \times s}$. Then \hat{A}_{nys} satisfies $$\mathbb{E}\|A - \hat{A}_{\mathsf{nys}}\| \leq \left(3 + \frac{4\mathsf{e}^2}{p}\mathsf{sr}_p(A)\right)\lambda_p.$$ ▶ error of randomized rank-s approximation is comparable with best error of any rank- $p = \frac{s+1}{2}$ approximation #### **Outline** Low rank approximation Nyström PCG SketchySGD **ADMN** NysADMM #### Regularized linear system find $x \in \mathbf{R}^n$ such that $$(A + \mu I)x = b$$ where $A \in \mathbf{S}^n_+$ is symmetric psd and $\mu \geq 0$. - ▶ eigenvalues of $A \lambda_1 \ge \cdots \ge \lambda_n$ - condition number $\kappa(A) = \lambda_1(A)/\lambda_n(A)$ - regularized matrix $A_{\mu} = A + \mu I$ has $\kappa(A_{\mu}) \leq \kappa(A)$ - matvec(A) time to compute matrix vector product Ax (often = nnz(A)) #### Sketch-and-solve Given a rank-s (Nyström) approximation $A \approx \hat{A} = V \hat{\Lambda} V^T$, why not solve $$(\hat{A} + \mu I)\hat{x} = b$$ instead of $(A + \mu I)x^* = b$? ightharpoonup (+) can apply inverse in O(ns) time, since $$(\hat{A} + \mu I)^{-1} = V(\hat{\Lambda} + \mu I)^{-1}V^T + \frac{1}{\mu}(I - VV^T)$$ #### Sketch-and-solve Given a rank-s (Nyström) approximation $A \approx \hat{A} = V \hat{\Lambda} V^T$, why not solve $$(\hat{A} + \mu I)\hat{x} = b$$ instead of $(A + \mu I)x^* = b$? ightharpoonup (+) can apply inverse in O(ns) time, since $$(\hat{A} + \mu I)^{-1} = V(\hat{\Lambda} + \mu I)^{-1}V^T + \frac{1}{\mu}(I - VV^T)$$ ▶ (+) works well if $b \in \mathbf{span}(V)$ #### Sketch-and-solve Given a rank-s (Nyström) approximation $A \approx \hat{A} = V \hat{\Lambda} V^T$, why not solve $$(\hat{A} + \mu I)\hat{x} = b$$ instead of $(A + \mu I)x^* = b$? ightharpoonup (+) can apply inverse in O(ns) time, since $$(\hat{A} + \mu I)^{-1} = V(\hat{\Lambda} + \mu I)^{-1}V^T + \frac{1}{\mu}(I - VV^T)$$ - ▶ (+) works well if $b \in \operatorname{span}(V)$ - ▶ (-) high accuracy requires $s \rightarrow n$ #### **Preconditioning CG** for any $$P \succ 0$$, $$Ax = b \iff P^{-1/2}Ax = P^{-1/2}b$$ $P^{-1/2}AP^{-1/2}z = P^{-1/2}b$ where $x = P^{-1/2}z$. #### **Preconditioning CG** for any $P \succ 0$, $$Ax = b \iff P^{-1/2}Ax = P^{-1/2}b$$ $P^{-1/2}AP^{-1/2}z = P^{-1/2}b$ where $x = P^{-1/2}z$. ▶ preconditioning works well when $\kappa(P^{-1/2}AP^{-1/2}) \ll \kappa(A)$ ### **Preconditioning CG** for any $P \succ 0$, $$Ax = b \iff P^{-1/2}Ax = P^{-1/2}b$$ $P^{-1/2}AP^{-1/2}z = P^{-1/2}b$ where $x = P^{-1/2}z$. ▶ preconditioning works well when $\kappa(P^{-1/2}AP^{-1/2}) \ll \kappa(A)$ how to precondition? - ightharpoonup common heuristic: Jacobi preconditioning $P = \operatorname{diag}(A)$ - incomplete Cholesky (best for structured sparsity) #### **Sketch-and-precondition** Sketch-and-precondition [Avron, Maymounkov, and Toledo (2010), Martinsson and Tropp (2020), X. Meng, Saunders, and Mahoney (2014), and Rokhlin and Tygert (2008)]: for an overdetermined problem $A = X^T X$ where $X \in \mathbb{R}^{N \times n}$, $N \gg n$, - ▶ pick *sketch size* $s = \Omega(n)$ - ▶ draw random matrix $S \in \mathbb{R}^{s \times n}$ (eg, iid normal entries) - compute randomized sketch SX - ightharpoonup compute pivoted-QR factorization SX = QR - ▶ precondition with $P = R^{-1}$ $O(n^3)$ flops, so only useful for moderate n #### An optimal low-rank preconditioner - ▶ suppose $[A]_s = V_s \Lambda_s V_s^T$ is a best rank-s apx to $A \in \mathbf{S}_+^n$. - the best preconditioner using this information is $$P_{\star} = \frac{1}{\lambda_{s+1}} V_s(\Lambda_s) V_s^{\mathsf{T}} + (I - V_s V_s^{\mathsf{T}})$$ #### Nyström preconditioner Given a rank-s Nyström approximation $$\hat{A}_{\mathsf{nys}} = V \hat{\Lambda} V^T \qquad \approx \qquad A \in \mathbf{S}_+^n,$$ the *Nyström preconditioner* for $(A + \mu I)x = b$ is $$P_{\mathsf{nys}} = \frac{1}{\hat{\lambda}_{\mathsf{s}} + \mu} V(\hat{\Lambda} + \mu I) V^{\mathsf{T}} + (I - VV^{\mathsf{T}})$$ #### Nyström preconditioner Given a rank-s Nyström approximation $$\hat{A}_{\mathsf{nys}} = V \hat{\Lambda} V^T \qquad \approx \qquad A \in \mathbf{S}_+^n,$$ the *Nyström preconditioner* for $(A + \mu I)x = b$ is $$P_{\mathsf{nys}} = \frac{1}{\hat{\lambda}_{\mathsf{s}} + \mu} V(\hat{\Lambda} + \mu I) V^{\mathsf{T}} + (I - VV^{\mathsf{T}})$$ inverse can be applied in O(ns): $$P^{-1} = (\hat{\lambda}_s + \mu) V (\hat{\Lambda} + \mu I)^{-1} V^T + (I - VV^T)$$ Source: Frangella, Tropp, and Udell, 2023 ### Nyström preconditioner is fast! Random features regression on YearMSD dataset (463,715 \times 15,000). Regularization $\mu=10^{-5}$; sketch size s=500. #### Nyström PCG controls the condition number ### Theorem (Nyström condition number bound) Let P be the Nyström preconditioner with regularization parameter $\mu \geq 0$ and let $M = P^{-1/2}A_{\mu}P^{-1/2}$ be the preconditioned matrix. Define the error $E = A - \hat{A}_{nys}$. Then $$\kappa(M) \leq \min \left\{ \frac{\hat{\lambda}_s + \mu + ||E||}{\mu}, \ 1 + \frac{||E||}{\hat{\lambda}_s + \mu} + \frac{\hat{\lambda}_s + \mu + ||E||}{\lambda_n + \mu} \right\}.$$ #### Nyström PCG controls the condition number ### Theorem (Nyström condition number bound) Let P be the Nyström preconditioner with regularization parameter $\mu \geq 0$ and let $M = P^{-1/2}A_{\mu}P^{-1/2}$ be the preconditioned matrix. Define the error $E = A - \hat{A}_{nys}$. Then $$\kappa(M) \leq \min \left\{ \frac{\hat{\lambda}_s + \mu + ||E||}{\mu}, \ 1 + \frac{||E||}{\hat{\lambda}_s + \mu} + \frac{\hat{\lambda}_s + \mu + ||E||}{\lambda_n + \mu} \right\}.$$ **corollary:** for large enough s, $\hat{\lambda}_s \leq \mu$ and $||E|| \leq \mu$, so $$\kappa_2(P^{-1/2}A_\mu P^{-1/2}) \le 3.$$ #### How to choose sketch size? how to get $||E|| \sim \mu$? - fixed sketch size s = 50 (works surprisingly well!) - adaptive: increase sketch size until (estimated) error is small enough - $|E| \approx \hat{\lambda}_{\ell}$ - ► add one dimension to sketch for a-posteriori error guarantee [Tropp et al. (2019)] - lacktriangle a priori, bound sketch size needed to ensure $\|E\|\sim \mu$ #### A priori bound via the effective dimension the *effective dimension* at μ is a smoothed count of evs $\geq \mu$: $$d_{\mathsf{eff}}(\mu) = \sum_{j=1}^n \frac{\lambda_j}{\lambda_j + \mu}.$$ #### A priori bound via the effective dimension the *effective dimension* at μ is a smoothed count of evs $\geq \mu$: $$d_{\mathsf{eff}}(\mu) = \sum_{j=1}^n \frac{\lambda_j}{\lambda_j + \mu}.$$ the effective dimension bounds sketch size required for constant condition number #### **Theorem** Construct the randomized Nyström preconditioner P with rank $s = 2\lceil 1.5 d_{eff}(\mu) \rceil + 1$. Then $$\mathbb{E}\left[\kappa(P^{-1/2}A_{\mu}P^{-1/2})\right]<28.$$ So whp relative error is $<\epsilon$ after $T \le \lceil 2.7 \log(\frac{2}{\epsilon}) \rceil$ iterations. ### PCG converges fast when $s \sim d_{\text{eff}}$ plug in bound on condition number to CG convergence theory: #### Corollary Let $M = P^{-1/2}A_{\mu}P^{-1/2}$, and suppose $$\kappa(M)$$ < 28. Then relative error $\delta_t := \|x_t - x_\star\|_M / \|x_\star\|_M$ of PCG iterate x_t , initialized with $x_0 = 0$, satisfies $$\delta_t < 2 (0.69)^t$$ and PCG attains relative error $\delta_t < \epsilon$ after $T \leq \lceil 2.7 \log(\frac{2}{\epsilon}) \rceil$ iterations. ### **Experimental results** | Dataset | Method | # iterations | Runtime (s) | |------------|---------------------|--------------|-------------| | | AdalHS | 55 | 1,052.7 | | Higgs-rf | R&T | 53 | 607.4 | | | Adaptive Nyström | 28 | 91.26 | | | AdalHS | 44 | 1,327.3 | | YearMSD-rf | R&T 49 | | 766.5 | | | Adaptive Nyström | 22 | 209.7 | | EMNIST | Random features PCG | 154 | 635.2 | | LIVIIVISI | Nyström | 32 | 268.4 | | | Random features PCG | 160 | 810.4 | | Santander | Nyström | 31 | 164.8 | Table: Nyström PCG is faster than other randomized preconditioners. - For Higgs and YearMSD, *s* uses a posteriori error estimation. - For EMNIST and Santander, s = 1,000 - ▶ R&T: sketch-and-precondition method [Rokhlin and Tygert (2008)] - ► AdalHS: Adaptive iterative Hessian sketch [Lacotte and Pilanci (2020)] - ▶ Random features PCG [Avron, Clarkson, and Woodruff (2017)] uses s = 1000 #### **Numerics: details** | Dataset | n | d | # classes | μ | σ | PCG tolerance | |------------|---------|--------|-----------|-------|----------|---------------| | Higgs-rf | 800,000 | 10,000 | 2 | 1e-4 | 5 | 1e-10 | | YearMSD-rf | 463,715 | 15,000 | NA | 1e-5 | 8 | 1e-10 | | EMNIST | 105,280 | 784 | 47 | 1e-6 | 8 | 1e-3 | | Santander | 160,000 | 200 | 2 | 1e-6 | 7 | 1e-3 | Table: Datasets: statistics and parameters. #### **Outline** Low rank approximation Nyström PCG SketchySGD **ADMM** NysADMM #### Classification with neural network - CIFAR-10 dataset, tabular version - basic MLP network - ▶ use Adam to train the neural network Adam is sensitive to hyperparameter settings #### Bad tuning ⇒ slow convergence how does initial learning rate affect performance? - ResNet-20 architecture - ► CIFAR-10 dataset $(m_{\rm tr} = 50,000, m_{\rm tst} = 10,000, n = 3,072)$ - ► SGD and Adam optimizers - ightharpoonup initialize learning rate η at $$\{10^{-4}, 3 \cdot 10^{-4}, 10^{-3}, 3 \cdot 10^{-3}, 10^{-2}, 3 \cdot 10^{-2}, 10^{-1}, 3 \cdot 10^{-1}, 10^{0}, 3 \cdot 10^{0}\}$$ \blacktriangleright follow best practices to decay η throughout training # Bad tuning ⇒ slow convergence # Bad tuning ⇒ slow convergence ## Ill-conditioning \implies slow convergence #### experiment on ill-conditioned dataset - ridge regression on E2006-dataset (m = 16,087, p = 150,360) - (small) l_2 -regularization $\nu = \frac{10^{-2}}{m}$ - state of the art first order methods for this problem: SGD, SVRG, SAGA, L-Katyusha, tuned for best performance - SketchySGD with default parameters # Ill-conditioning \implies slow convergence #### **Stochastic optimization** consider the empirical risk minimization problem for $w \in \mathbf{R}^p$ minimize $$\frac{1}{n} \sum_{i=1}^{n} f_i(w)$$ stochastic gradient method (SGD): $$w \leftarrow w - \eta g$$ where $g \approx \nabla f(w)$ works if $$\mathbf{E} g = \nabla f(w)$$ ## Preconditioned stochastic optimization stochastic quasi-Newton method: $$w \leftarrow w - \eta H^{-1}g$$ where $g \approx \nabla f(w)$, $H \approx \nabla^2 f(w)$ #### pros: - faster convergence - more robust to ill-conditioned problems (= all ML problems) - \triangleright easier to choose hyperparameters (learning rate η) #### cons: $ightharpoonup abla^2 f(x)$ is expensive to compute and apply # Preconditioned stochastic optimization stochastic quasi-Newton method: $$w \leftarrow w - \eta H^{-1}g$$ where $g \approx \nabla f(w)$, $H \approx \nabla^2 f(w)$ #### pros: - faster convergence - more robust to ill-conditioned problems (= all ML problems) - \triangleright easier to choose hyperparameters (learning rate η) #### cons: $ightharpoonup abla^2 f(x)$ is expensive to compute and apply Q: Why not use Quasi-Newton methods like (L-)BFGS? ## Preconditioned stochastic optimization stochastic quasi-Newton method: $$w \leftarrow w - \eta H^{-1}g$$ where $g \approx \nabla f(w)$, $H \approx \nabla^2 f(w)$ #### pros: - faster convergence - more robust to ill-conditioned problems (= all ML problems) - \triangleright easier to choose hyperparameters (learning rate η) #### cons: $ightharpoonup abla^2 f(x)$ is expensive to compute and apply Q: Why not use Quasi-Newton methods like (L-)BFGS? A: Classical QN requires full gradient evaluations # How to approximate $\nabla^2 f(x)$? - from a data subsample - from stale data - by the secant condition (BFGS, I-BFGS) - by diagonal approximation (adaHessian) - by block-diagonal kronecker approximation (Shampoo, KFAC, SENG, K-BFGS) - by low rank approximation (sketchySGD) Source: Erdogdu and Montanari, 2015, Shampoo Gupta, Koren, and Singer, 2018, Roosta-Khorasani and Mahoney, 2019, Bollapragada, Byrd, and Nocedal, 2019, AdaHessian Yao et al., 2021, R-SSN S. Y. Meng et al., 2020, KFAC Grosse and Martens, 2016, SENG Yang et al., 2020, Goldfarb, Ren, and Bahamou, 2020 ## Subsampling the Hessian Hessian of $f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$ is $$\nabla^2 f(w) = \frac{1}{m} \sum_{i=1}^m \nabla^2 f_i(w)$$ Subsampled Hessian is $$\widehat{\nabla}^2 f(w) = \frac{1}{|S|} \sum_{i \in S} \nabla^2 f_i(w),$$ where $S \subseteq \{1, \dots, m\}$ is chosen uniformly at random. ## Subsampling the Hessian Hessian of $f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$ is $$\nabla^2 f(w) = \frac{1}{m} \sum_{i=1}^m \nabla^2 f_i(w)$$ Subsampled Hessian is $$\widehat{\nabla}^2 f(w) = \frac{1}{|S|} \sum_{i \in S} \nabla^2 f_i(w),$$ where $S \subseteq \{1, \dots, m\}$ is chosen uniformly at random. Subsampled Newton method: $$w_{k+1} = w_k - \eta_k \left(\widehat{\nabla}^2 f(x_k)\right)^{-1} \widehat{\nabla} f(w_k)$$ ## More approximations, more problems - 1. *complexity.* Hessian of single loss $f_i : \mathbf{R}^p \to \mathbf{R}$ costs p^2 to compute and to store - 2. *invertibility*. Hessian approximation may not be invertible $\widehat{\nabla}^2 f(w_k)$ - 3. descent. (stochastic quasi-)Newton search direction $$\left(\widehat{\nabla}^2 f(x_k)\right)^{-1} \widehat{\nabla} f(w_k)$$ may not be a descent direction ## More approximations, more problems - 1. *complexity.* Hessian of single loss $f_i : \mathbf{R}^p \to \mathbf{R}$ costs p^2 to compute and to store - 2. *invertibility*. Hessian approximation may not be invertible $\widehat{\nabla}^2 f(w_k)$ - 3. descent. (stochastic quasi-)Newton search direction $$\left(\widehat{\nabla}^2 f(x_k)\right)^{-1} \widehat{\nabla} f(w_k)$$ may not be a descent direction #### solutions: - 1. complexity. automatic differentiation - 2. invertibility. use regularized Hessian approx $\widehat{\nabla}^2 + \rho I$ - 3. descent. harder . . . # Complexity: how to access $\nabla^2 f(w)$? our oracle: stochastic Hessian-vector products (HVPs) - 1. minibatch loss $\tilde{f}(w) = \sum_{i \in S} f_i(w)$ for $S \subset \{1, ..., n\}$ - 2. compute minibatch gradient with automatic differentiation (AD) $\tilde{g}(w) = \nabla \tilde{f}(w)$ - 3. define minibatch Hessian vector product with vector v $$(\nabla^2 \tilde{f}(w))v = \nabla(\tilde{g}(w) \cdot v)$$ and compute using AD on $\tilde{g}(w) \cdot v$ (Pearlmutter's trick) cost: two passes of AD \approx 4× cost of function evaluation ## HVPs to find (stochastic quasi)-Newton direction ▶ CG (or MINRES, for indefinite $\widehat{\nabla}^2 f(x)$) to compute search direction $$\left(\widehat{\nabla}^2 f(x_k)\right)^{-1} \widehat{\nabla} f(w_k)$$ uses only HVPs - ▶ problem: bad conditioning ⇒ slow convergence of CG - Nystrom approximation for regularized Hessian $\widehat{\nabla}^2 + \rho I$ uses only HVPs ## SketchySGD every now and then (e.g., each epoch), \triangleright sample data batch S_k to sketch subsampled Hessian $$H_{S_k}(w_k) = \frac{1}{|S_k|} \sum_{j \in S_k} \nabla^2 f_j(w_k)$$ • form rank r approximation \hat{H}_{S_k} at each iteration k, - ightharpoonup sample data batch B_k - form gradient estimate $$g_{B_k}(w_k) = \frac{1}{|B_k|} \sum_{j \in B_k} g_j(w_k)$$ take step $$w_{k+1} = w_k - \eta_k (\hat{H}_{S_k} + \rho_k I)^{-1} g_{B_k}(w_k)$$ ## SketchySGD is fast computing search direction v_k requires O(pr) flops: $$v_k = \hat{V} \left(\hat{\Lambda} + \rho_k I \right)^{-1} \hat{V}^T g_{B_k} + \frac{1}{\rho_k} (g_{B_k} - \hat{V} \hat{V}^T g_{B_k})$$ - ▶ the cost of a fresh low-rank Hessian approximation is $O((b_{h_k} + r^2)p)$. - ▶ given Hessian approximation, per-iteration cost is $O((b_{g_k} + r)p)$. #### Relative condition number the relative condition number is $\hat{\kappa} = \hat{L}/\hat{\mu}$ where $\hat{L} \geq \hat{\mu} > 0$ are defined such that for all $w, w' \in \mathcal{X}$ $$f(w') \le f(w) + \langle g(w), w' - w \rangle + \frac{\hat{L}}{2} \|w' - w\|_{H(w)}^2,$$ $f(w') \ge f(w) + \langle g(w), w' - w \rangle + \frac{\hat{\mu}}{2} \|w' - w\|_{H(w)}^2.$ (The condition number $\kappa = L/\mu$ is defined similarly, replacing H(w) by I.) #### Theory: convex Suppose f_i are all smooth and convex and f is L-smooth and μ -strongly convex. Define $$\lambda_{r+1}^{\star} = \sup_{w \in \mathcal{X}} \lambda_{r+1}(H(w)).$$ Observe $\lambda_{r+1}^{\star} \leq L$ and is often significantly smaller. ## Corollary Let $T_{SketchySGD}$ denote the iteration complexity of SketchySGD and T_{SGD} denote the iteration complexity of SGD given from Theorem 4.6 in Gower, Sebbouh, and Loizou, 2021. Then $$\frac{T_{\text{SGD}}}{T_{\text{SketchySGD}}} \ge \frac{\hat{\mu}}{\hat{\kappa}} \frac{L}{30\lambda_{r+1}^{\star}}.$$ In particular, in the case of the least-squares loss we have $$\frac{T_{\mathsf{SGD}}}{T_{\mathsf{SketchySGD}}} \geq \frac{L}{30\lambda_{r+1}^{\star}} = \frac{\lambda_1(H)}{30\lambda_{r+1}(H)}.$$ #### Theory: nonconvex #### assumptions - ightharpoonup f and each f_i are twice differentiable and smooth - f satisfies PL condition: $$\|g(w)\|^2 \ge 2\theta(f(w) - f(w_\star)), \ \forall w$$ ▶ interpolation: optimizer $w_{\star} \in \mathcal{W}_{\star}$ satisfies $\|g_i(w_{\star})\| = 0$ for each $i \in \{1, ... n\}$ the SketchySGD iterate w_t after t > 0 iterations satisfies $$\mathbb{E}[f(w_t)] - f(w_*) \leq (1 - h(\theta))^t (f(w_0) - f(w_*)).$$ - ightharpoonup constant $h(\theta)$ has explicit analytical form - linear convergence (optimality gap drops exponentially) # SketchySGD: simple parameter selection #### For convex problems: - ▶ Batch sizes set equal $b_g = b_h$. We used 256 in these examples. - ightharpoonup Fixed rank r = 50. - ► Fixed regularization $\rho \in \{10^{-1}, 10^{-2}, 10^{-3}\}$ at every iteration. Here, $\rho = 10^{-3}$. - Learning rate $\eta = \frac{1}{1+100\hat{\lambda}_r}$, where $\hat{\lambda}_r$ is the rth eigenvalue of the current subsampled Hessian approximation \hat{H} . - ightharpoonup Compute a fresh approximation \hat{H} after each epoch or two. #### For deep learning: - ▶ Batch sizes set equal $b_g = b_h$. We used 128 in this paper. - Fixed rank r = 100. - Fixed learning rate $\eta = 10^{-2}$. - ▶ Fixed regularization $\rho = \eta$ at every iteration. - ightharpoonup Compute a fresh approximation \hat{H} after each epoch or two. # **SOTA**ish results in deep learning - SketchySGD uses the default parameter choices - preconditioner is updated every 2 epochs - ▶ all optimizers use the same learning rate decay # SketchySGD is reliable (CIFAR-10) #### back to ResNet-20 on CIFAR-10 # SketchySGD is near-optimal (CIFAR-10) # SketchySGD is reliable (Miniboone) # SketchySGD is near-optimal (Miniboone) ## SketchySGD is more reliable than SQN competitors stochastic quasi-Newton methods for DL on MiniBoone # SketchySGD outperforms SQN competitors #### **Outline** Low rank approximation Nyström PCG SketchySGD **ADMM** NysADMM ## **Composite optimization** minimize $$\ell(Ax) + r(x)$$ - $ightharpoonup A: \mathbf{R}^n o \mathbf{R}^m$ linear - $ho \quad \ell: \mathbf{R}^m \to \mathbf{R} \text{ smooth}$ - $ightharpoonup r: \mathbf{R}^n \to \mathbf{R}$ proxable - easy (often closed form) solution to $\operatorname{prox}_r(x) = \operatorname{argmin}_v r(y) + \frac{1}{2} ||x y||^2$ - e.g., for $r(x) = ||x||_1$, **prox**_r(\bar{x}) is soft-thresholding operator ## **Example: Lasso** $$\text{minimize} \quad \frac{1}{2}\|Ax-b\|_2^2+\gamma\|x\|_1$$ - $\ell(Ax) = \frac{1}{2} ||Ax b||_2^2$ smooth - $ightharpoonup r(x) = \gamma ||x||_1$ proxable - lacktriangledown parameter $\gamma>0$ controls strength of regularization ## **Example: Lasso** $$\text{minimize} \quad \frac{1}{2}\|Ax-b\|_2^2 + \gamma \|x\|_1$$ - $\ell(Ax) = \frac{1}{2} ||Ax b||_2^2$ smooth - $ightharpoonup r(x) = \gamma ||x||_1$ proxable - lacktriangle parameter $\gamma>0$ controls strength of regularization other examples: regularized logistic regression, SVM, ... #### **ADMM** consider the problem minimize $$f(x) + g(z)$$ subject to $Ax + Bz = c$ Augmented Lagrangian for this problem (with dual variable y) is $$L_t(x, z, y) = f(x) + g(z) + y^T (Ax + Bz - c) + t/2 ||Ax + Bz - c||^2$$ Alternating Directions Method of Multipliers (ADMM) iteration is $$\begin{split} x^{(k+1)} &= & \underset{x}{\operatorname{argmin}} \, L_t(x, z^{(k)}, y^{(k)}) \\ z^{(k+1)} &= & \underset{z}{\operatorname{argmin}} \, L_t(x^{(k+1)}, z, y^{(k)}) \\ y^{(k+1)} &= & y^{(k)} + \frac{1}{t} (Ax^{(k+1)} + Bz^{(k+1)} - c) \\ \end{split}$$ #### **ADMM** #### properties: - ightharpoonup converges for any t > 0 (but can be very slow) - letting y = tu, equivalent to the iteration $$x^{(k+1)} = \underset{x}{\operatorname{argmin}} f(x) + t/2 ||Ax + Bz^{(k)} - c + u^{(k)}||^{2}$$ $$z^{(k+1)} = \underset{z}{\operatorname{argmin}} g(z) + t/2 ||Ax^{(k+1)} + Bz - c + u^{(k)}||^{2}$$ $$u^{(k+1)} = u^{(k)} + Ax^{(k+1)} + Bz^{(k+1)} - c$$ ► frequently used for distributed optimization: problems decouple if *A* or *B* is diagonal # Equivalence between iterative algorithms for optimization Figure: relations between DR, ADMM, and Chambolle-Pock. Source: [Zhao, Lessard, and Udell (2021)] #### **Algorithm** ADMM ``` Input: loss function \ell \circ A, regularization r, stepsize \rho, initial z^0, u^0=0 for k=0,1,\ldots do x^{k+1}=\operatorname{argmin}_x\{\ell(Ax)+\frac{\rho}{2}\|x-z^k+u^k\|_2^2\} z^{k+1}=\operatorname{prox}_{\frac{2}{\rho}r(z)}(x^{k+1}+u^k) u^{k+1}=u^k+x^{k+1}-z^{k+1} return x_* (nearly) minimizing \ell(Ax)+r(x) ``` #### **Algorithm** ADMM ``` Input: loss function \ell \circ A, regularization r, stepsize \rho, initial z^0, u^0 = 0 for k = 0, 1, \ldots do x^{k+1} = \operatorname{argmin}_x \{\ell(Ax) + \frac{\rho}{2} \|x - z^k + u^k\|_2^2\} z^{k+1} = \operatorname{argmin}_z \{r(z) + \frac{\rho}{2} \|x^{k+1} - z + u^k\|_2^2\} u^{k+1} = u^k + x^{k+1} - z^{k+1} return x_* (nearly) minimizing \ell(Ax) + r(x) ``` #### **Algorithm** ADMM ``` Input: loss function \ell \circ A, regularization r, stepsize \rho, initial z^0, u^0 = 0 for k = 0, 1, \ldots do x^{k+1} = \operatorname{argmin}_x \{\ell(Ax) + \frac{\rho}{2} \|x - z^k + u^k\|_2^2\} z^{k+1} = \operatorname{argmin}_z \{r(z) + \frac{\rho}{2} \|x^{k+1} - z + u^k\|_2^2\} u^{k+1} = u^k + x^{k+1} - z^{k+1} return x_* (nearly) minimizing \ell(Ax) + r(x) ``` **problem:** x-min involves the (large) data: not easy to solve! #### **Algorithm** ADMM ``` Input: loss function \ell \circ A, regularization r, stepsize \rho, initial z^0, u^0 = 0 for k = 0, 1, \ldots do x^{k+1} = \operatorname{argmin}_x \{\ell(Ax) + \frac{\rho}{2} \| x - z^k + u^k \|_2^2 \} z^{k+1} = \operatorname{argmin}_z \{r(z) + \frac{\rho}{2} \| x^{k+1} - z + u^k \|_2^2 \} u^{k+1} = u^k + x^{k+1} - z^{k+1} return x_* (nearly) minimizing \ell(Ax) + r(x) ``` **problem:** *x*-min involves the (large) data: not easy to solve! **solution:** inexact ADMM - ightharpoonup solve x-min approximately with error ε^k - converges if $\sum_{k} \varepsilon^{k} < \infty$ [Eckstein and Bertsekas (1992)] #### **Algorithm** ADMM ``` Input: loss function \ell \circ A, regularization r, stepsize \rho, initial z^0, u^0 = 0 for k = 0, 1, \ldots do x^{k+1} = \operatorname{argmin}_x \{\ell(Ax) + \frac{\rho}{2} \| x - z^k + u^k \|_2^2 \} z^{k+1} = \operatorname{argmin}_z \{r(z) + \frac{\rho}{2} \| x^{k+1} - z + u^k \|_2^2 \} u^{k+1} = u^k + x^{k+1} - z^{k+1} return x_* (nearly) minimizing \ell(Ax) + r(x) ``` **problem:** *x*-min involves the (large) data: not easy to solve! **solution:** inexact ADMM - ightharpoonup solve x-min approximately with error ε^k - converges if $\sum_{k} \varepsilon^{k} < \infty$ [Eckstein and Bertsekas (1992)] add randNLA: use Nyström PCG to speed up x-min ## **Quadratic approximation** if ℓ is twice diffable, approximate obj near prev iterate x^k $$\ell(Ax) \approx \ell(Ax^k) + (x - x^k)^T A^T \nabla \ell(Ax^k) + \frac{1}{2} (x - x^k)^T A^T H_{\ell}(Ax^k) A(x x^k)$$ where H_{ℓ} is the Hessian of ℓ . ## **Quadratic approximation** if ℓ is twice diffable, approximate obj near prev iterate x^k $$\ell(Ax) \approx \ell(Ax^k) + (x - x^k)^T A^T \nabla \ell(Ax^k) + \frac{1}{2} (x - x^k)^T A^T H_{\ell}(Ax^k) A(x H_$$ with this approximation, x-min becomes linear system: find x so $$(A^T H_{\ell}(Ax^k)A + \rho I)x = r^k$$ where $$r^k = \rho z^k - \rho u^k + A^T H_{\ell}(Ax^k) Ax^k - A^T \nabla \ell(Ax^k)$$ # Nyström PCG to solve ADMM subproblem $$(A^T H_{\ell}(x^k)A + \rho I)x = r^k$$ - $ightharpoonup A^T H_{\ell}(x^k) A$ has data in it \implies fast spectral decay - \triangleright stepsize ρ regularizes linear system - ▶ if ℓ is quadratic (e.g., lasso and SVM), $H_{\ell}(x^k) = H_{\ell}$ is constant, so only need to sketch $A^T H_{\ell} A$ once ## Nyström PCG to solve ADMM subproblem $$(A^T H_{\ell}(x^k)A + \rho I)x = r^k$$ - $ightharpoonup A^T H_\ell(x^k) A$ has data in it \implies fast spectral decay - \triangleright stepsize ρ regularizes linear system - ▶ if ℓ is quadratic (e.g., lasso and SVM), $H_{\ell}(x^k) = H_{\ell}$ is constant, so only need to sketch $A^T H_{\ell} A$ once #### in theory: - ▶ solve to tolerance ϵ^k at iteration k, where $\sum_k \epsilon^k < \infty$ - ▶ if sketch size $s \approx d_{\text{eff}}(\rho)$, need $\leq O(\log(1/\epsilon^k))$ CG steps # Nyström PCG to solve ADMM subproblem $$(A^T H_{\ell}(x^k)A + \rho I)x = r^k$$ - $ightharpoonup A^T H_{\ell}(x^k) A$ has data in it \implies fast spectral decay - \triangleright stepsize ρ regularizes linear system - ▶ if ℓ is quadratic (e.g., lasso and SVM), $H_{\ell}(x^k) = H_{\ell}$ is constant, so only need to sketch $A^T H_{\ell} A$ once #### in theory: - ▶ solve to tolerance ϵ^k at iteration k, where $\sum_k \epsilon^k < \infty$ - ▶ if sketch size $s \approx d_{\mathsf{eff}}(\rho)$, need $\leq O(\log(1/\epsilon^k))$ CG steps ## in practice: - ightharpoonup set ϵ^k = geomean(primal resid, dual resid) - \triangleright set sketch size s = 50 ## NysADMM algorithm #### **Algorithm** NysADMM - input loss function $\ell \circ A$, regularization r, stepsize ρ , positive summable sequence $\{\varepsilon^k\}_{k=0}^{\infty}$, initial z^0 , $u^0 = 0$ - $_{2}$ for $k = 0, 1, \dots$ do - compute $r^k = \rho z^k \rho u^k + A^T H_\ell(Ax^k) Ax^k A^T \nabla \ell(Ax^k)$ - use Nyström PCG to find ε^k -apx solution x^{k+1} to $$(A^T H_{\ell}(Ax^k)A + \rho I)x^{k+1} = r^k$$ - $z^{k+1} = \underset{k+1}{\operatorname{argmin}}_{z} \{ r(z) + \frac{\rho}{2} || x^{k+1} z + u^{k} ||_{2}^{2} \}$ - $u^{k+1} = u^k + x^{k+1} z^{k+1}$ - 7 **return** x_{\star} (nearly) minimizing $\ell(Ax) + r(x)$ Source: Zhao, Frangella, and Udell, 2022 ## The competition #### lasso: - SSNAL, a Newton augmented Lagrangian method [Li, Sun, and Toh (2018)] - mfIPM, a matrix-free interior point method [Fountoulakis, Gondzio, and Zhlobich (2014)] - glmnet, a coordinate-descent method [Friedman, Hastie, and Tibshirani (2010)] ## logistic regression: ► SAGA, a stochastic average gradient method [Defazio, Bach, and Lacoste-Julien (2014)] #### SVM: ▶ LIBSVM, a sequential minimal optimization (pairwise coordinate descent) method [Chang and Lin (2011)] ### **Numerical experiments: settings** - pick datasets with n > 10,000 or d > 10,000 from LIBSVM, UCI, and OpenML. - use random feature map to generate more features - use same stopping criterion and parameter settings as the standard solver for each problem class - \triangleright constant sketch size s = 30 #### Lasso results stl10 dataset. stop iteration when $$\frac{\|x - \mathsf{prox}_{\gamma\|\cdot\|_1}(x - A^{\mathcal{T}}(Ax - b))\|}{1 + \|x\| + \|Ax - b\|} \le \epsilon.$$ #### Lasso results | Task | Time for $\epsilon=10^{-1}$ (s) | | | | |--------------|---------------------------------|-------|-------|--------| | | NysADMM | mfIPM | SSNAL | glmnet | | STL-10 | 165 | 573 | 467 | 278 | | CIFAR-10-rf | 251 | 655 | 692 | 391 | | smallNorb-rf | 219 | 552 | 515 | 293 | | E2006.train | 313 | 875 | 903 | 554 | | sector | 235 | 678 | 608 | 396 | | realsim-rf | 193 | _ | 765 | 292 | | rcv1-rf | 226 | 563 | 595 | 273 | | cod-rna-rf | 208 | 976 | 865 | 324 | # ℓ_1 -regularized logistic regression results Table: Results for ℓ_1 -regularized logistic regression experiment. | Task | NysADMM time (s) | SAGA (sklearn) time (s) | |--------------|------------------|-------------------------| | STL-10 | 3012 | 6083 | | CIFAR-10-rf | 7884 | 21256 | | p53-rf | 528 | 2116 | | connect-4-rf | 866 | 4781 | | smallnorb-rf | 1808 | 6381 | | rcv1-rf | 1237 | 3988 | | con-rna-rf | 7528 | 21513 | ## **Support vector machine results** NysADMM is $\geq 5 \times$ faster, although code is pure python! Table: Results of SVM experiment. | Task | NysADMM time (s) | LIBSVM time (s) | | |--------------|------------------|-----------------|--| | STL-10 | 208 | 11573 | | | CIFAR-10 | 1636 | 8563 | | | p53-rf | 291 | 919 | | | connect-4-rf | 7073 | 42762 | | | realsim-rf | 17045 | 52397 | | | rcv1-rf | 564 | 32848 | | | cod-rna-rf | 4942 | 36791 | | # What approximations are allowed? Source: Frangella et al., 2023 #### **Conclusion** low rank structure is everywhere! use it to accelerate - ightharpoonup top-k eigenvalue decomposition - (regularized) linear system solve: $(A + \mu I)x = b$ - **composite optimization:** minimize $\ell(x) + r(x)$ - stochastic gradient descent - ...your favorite problem ...?