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Low rank approximation for faster optimization

thesis: randNLA allows O(n) matvecs with n×n matrix A
=⇒ can speed up algorithms that use large matrices,

e.g.,

1. Nyström PCG to solve Ax = b
▶ randomized low rank approximation as preconditioner

2. NysADMM for composite optimization
minimize f (Ax) + g(x), e.g.,
▶ lasso
▶ regularized logistic regression
▶ support vector machine

randNLA beats SOTA solver for all these problems!

3. SketchySGD for finite sum minimization
∑n

i=1 fi (x)
low rank approximation for Newton system improves
▶ robustness (vs first-order methods) and
▶ speed (vs other quasi-Newton methods)

even works for deep learning!
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Low rank approximation via eigenvalues

given A ∈ Sn
+ (symmetric positive definite), find the best rank-s

approximation:

▶ compute the eigenvalue decomposition (O(n3) flops)

A = UΛUT

with Λ = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn,
UUT = UTU = In,

▶ truncate to top s eigenvector/value pairs:

Â = UsΛsU
T
s

with Λs = diag(λ1, . . . , λs),
Us ∈ Rn×s is first s columns of U ∈ Rn×n so UT

s Us = Is

4 / 69



Nyström approximation

given A ∈ Sn
+, approximate with the Nyström method:

▶ choose any test matrix Ω ∈ Rn×s , 1 ≤ s ≤ n

▶ Nyström approximation of A wrt Ω is [Tropp et al. (2017)]

A⟨Ω⟩ = (AΩ)(ΩTAΩ)†(AΩ)T .

properties:

▶ A⟨Ω⟩ ∈ Sn
+

▶ rank(A⟨Ω⟩) ≤ s

▶ A⟨Ω⟩ ⪯ A
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Efficient eigs via randomized NLA

given A ∈ Sn
+, find a good rank-s approximation:

▶ draw random Gaussian matrix Ω ∈ Rn×s

▶ compute randomized linear sketch Y = AΩ.

▶ form Nyström approximation

Ânys = (AΩ)(ΩTAΩ)†(AΩ)T = Y (ΩTY )†Y T .

▶ in practice, construct apx eigs Â = V Λ̂V T using
tall-skinny QR, small SVD

properties:

▶ requires only matvecs with A, streaming ok

▶ total computation: s matvecs + O(ns2)

▶ total storage: O(ns)

▶ Ânys is spd, rank(Ânys) ≤ s, and Ânys ⪯ A
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Randomized Nyström approximation: guarantees

define the p-stable rank srp(A) = λ−1
p

∑n
j=p λj

Theorem (Randomized Nyström approximation)

Let A ∈ Sn
+ with eigenvalues λ1 ≥ · · · ≥ λn. Pick any p ≥ 2 and

set sketch size s = 2p − 1. Draw a Gaussian random test matrix
Ω ∈ Rn×s . Then Ânys satisfies

E∥A− Ânys∥ ≤
(
3 +

4e2

p
srp(A)

)
λp.

▶ error of randomized rank-s approximation is comparable
with best error of any rank-p = s+1

2 approximation
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E∥A− Ânys∥ ≤
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Regularized linear system

find x ∈ Rn such that

(A+ µI )x = b

where A ∈ Sn
+ is symmetric psd and µ ≥ 0.

▶ eigenvalues of A λ1 ≥ · · · ≥ λn

▶ condition number κ(A) = λ1(A)/λn(A)

▶ regularized matrix Aµ = A+ µI has κ(Aµ) ≤ κ(A)

▶ matvec(A) time to compute matrix vector product Ax
(often = nnz(A))
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Sketch-and-solve

Given a rank-s (Nyström) approximation A ≈ Â = V Λ̂V T ,
why not solve

(Â+ µI )x̂ = b instead of (A+ µI )x⋆ = b?

▶ (+) can apply inverse in O(ns) time, since

(Â+ µI )−1 = V (Λ̂ + µI )−1V T +
1

µ
(I − VV T )

▶ (+) works well if b ∈ span(V )

▶ (-) high accuracy requires s → n
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Preconditioning CG

for any P ≻ 0,

Ax = b ⇐⇒ P−1/2Ax = P−1/2b

P−1/2AP−1/2z = P−1/2b

where x = P−1/2z .

▶ preconditioning works well when κ(P−1/2AP−1/2)≪ κ(A)

how to precondition?

▶ common heuristic: Jacobi preconditioning P = diag(A)

▶ incomplete Cholesky (best for structured sparsity)
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Sketch-and-precondition

Sketch-and-precondition [Avron, Maymounkov, and Toledo
(2010), Martinsson and Tropp (2020), X. Meng, Saunders, and
Mahoney (2014), and Rokhlin and Tygert (2008)]: for an
overdetermined problem A = XTX where X ∈ RN×n, N ≫ n,

▶ pick sketch size s = Ω(n)

▶ draw random matrix S ∈ Rs×n (eg, iid normal entries)

▶ compute randomized sketch SX

▶ compute pivoted-QR factorization SX = QR

▶ precondition with P = R−1

O(n3) flops, so only useful for moderate n
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An optimal low-rank preconditioner

▶ suppose ⌊A⌋s = VsΛsV
T
s is a best rank-s apx to A ∈ Sn

+.

▶ the best preconditioner using this information is

P⋆ =
1

λs+1
Vs(Λs)V

T
s + (I − VsV

T
s )

i

i

before preconditioning
after preconditioning
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Nyström preconditioner

Given a rank-s Nyström approximation

Ânys = V Λ̂V T ≈ A ∈ Sn
+,

the Nyström preconditioner for (A+ µI )x = b is

Pnys =
1

λ̂s + µ
V (Λ̂ + µI )V T + (I − VV T )

inverse can be applied in O(ns):

P−1 = (λ̂s + µ)V (Λ̂ + µI )−1V T + (I − VV T )

Source: Frangella, Tropp, and Udell, 2023
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Ânys = V Λ̂V T ≈ A ∈ Sn
+,

the Nyström preconditioner for (A+ µI )x = b is

Pnys =
1

λ̂s + µ
V (Λ̂ + µI )V T + (I − VV T )

inverse can be applied in O(ns):

P−1 = (λ̂s + µ)V (Λ̂ + µI )−1V T + (I − VV T )

Source: Frangella, Tropp, and Udell, 2023

14 / 69



Nyström preconditioner is fast!

0 200 400 600 800 1000

Time(s)

10−15

10−13
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R
es

id
u
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Nyström PCG

CG

Jacobi PCG

QR

Random features regression on YearMSD dataset (463, 715× 15, 000).
Regularization µ = 10−5; sketch size s = 500.
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Nyström PCG controls the condition number

Theorem (Nyström condition number bound)

Let P be the Nyström preconditioner with regularization
parameter µ ≥ 0 and let M = P−1/2AµP

−1/2 be the
preconditioned matrix. Define the error E = A− Ânys. Then

κ(M) ≤ min

{
λ̂s + µ+ ∥E∥

µ
, 1 +

∥E∥
λ̂s + µ

+
λ̂s + µ+ ∥E∥

λn + µ

}
.

corollary: for large enough s, λ̂s ≤ µ and ∥E∥ ≤ µ, so

κ2(P
−1/2AµP

−1/2) ≤ 3.
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How to choose sketch size?

how to get ∥E∥ ∼ µ?

▶ fixed sketch size s = 50 (works surprisingly well!)
▶ adaptive: increase sketch size until (estimated) error is

small enough
▶ ∥E∥ ≈ λ̂ℓ

▶ add one dimension to sketch for a-posteriori error guarantee
[Tropp et al. (2019)]

▶ a priori, bound sketch size needed to ensure ∥E∥ ∼ µ
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A priori bound via the effective dimension

the effective dimension at µ is a smoothed count of evs ≥ µ:

deff(µ) =
n∑

j=1

λj

λj + µ
.

the effective dimension bounds sketch size required for constant
condition number

Theorem
Construct the randomized Nyström preconditioner P with rank
s = 2⌈1.5deff(µ)⌉+ 1. Then

E
[
κ(P−1/2AµP

−1/2)
]
< 28.

So whp relative error is < ϵ after T ≤ ⌈2.7 log(2ϵ )⌉ iterations.
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PCG converges fast when s ∼ deff

plug in bound on condition number to CG convergence theory:

Corollary

Let M = P−1/2AµP
−1/2, and suppose

κ(M) < 28.

Then relative error δt := ∥xt − x⋆∥M/∥x⋆∥M of PCG iterate xt ,
initialized with x0 = 0, satisfies

δt < 2 (0.69)t

and PCG attains relative error δt < ϵ after T ≤ ⌈2.7 log(2ϵ )⌉
iterations.
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Experimental results

Dataset Method # iterations Runtime (s)

Higgs-rf
AdaIHS 55 1, 052.7
R&T 53 607.4

Adaptive Nyström 28 91.26

YearMSD-rf
AdaIHS 44 1, 327.3
R&T 49 766.5

Adaptive Nyström 22 209.7

EMNIST
Random features PCG 154 635.2

Nyström 32 268.4

Santander
Random features PCG 160 810.4

Nyström 31 164.8

Table: Nyström PCG is faster than other randomized preconditioners.
▶ For Higgs and YearMSD, s uses a posteriori error estimation.

▶ For EMNIST and Santander, s = 1, 000

▶ R&T: sketch-and-precondition method [Rokhlin and Tygert (2008)]

▶ AdaIHS: Adaptive iterative Hessian sketch [Lacotte and Pilanci (2020)]

▶ Random features PCG [Avron, Clarkson, and Woodruff (2017)] uses
s = 1000
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Numerics: details

Dataset n d # classes µ σ PCG tolerance
Higgs-rf 800,000 10,000 2 1e-4 5 1e-10

YearMSD-rf 463,715 15,000 NA 1e-5 8 1e-10

EMNIST 105,280 784 47 1e-6 8 1e-3

Santander 160,000 200 2 1e-6 7 1e-3

Table: Datasets: statistics and parameters.
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Classification with neural network

▶ CIFAR-10 dataset, tabular version

▶ basic MLP network

▶ use Adam to train the neural network
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Adam needs babysitting

Adam is sensitive to hyperparameter settings
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Preconditioning improves robustness
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Bad tuning =⇒ slow convergence

how does initial learning rate affect performance?

▶ ResNet-20 architecture

▶ CIFAR-10 dataset
(mtr = 50, 000,mtst = 10, 000, n = 3, 072)

▶ SGD and Adam optimizers

▶ initialize learning rate η at

{10−4, 3·10−4, 10−3, 3·10−3, 10−2, 3·10−2, 10−1, 3·10−1, 100, 3·100}

▶ follow best practices to decay η throughout training
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Bad tuning =⇒ slow convergence
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Bad tuning =⇒ slow convergence
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Ill-conditioning =⇒ slow convergence

experiment on ill-conditioned dataset

▶ ridge regression on E2006-dataset
(m = 16, 087, p = 150, 360)

▶ (small) l2-regularization ν = 10−2

m

▶ state of the art first order methods for this problem: SGD,
SVRG, SAGA, L-Katyusha, tuned for best performance

▶ SketchySGD with default parameters
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Ill-conditioning =⇒ slow convergence
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Stochastic optimization

consider the empirical risk minimization problem for w ∈ Rp

minimize
1

n

n∑
i=1

fi (w)

stochastic gradient method (SGD):

w ← w − ηg where g ≈ ∇f (w)

works if E g = ∇f (w)
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Preconditioned stochastic optimization

stochastic quasi-Newton method:

w ← w − ηH−1g where g ≈ ∇f (w), H ≈ ∇2f (w)

pros:

▶ faster convergence

▶ more robust to ill-conditioned problems (= all ML
problems)

▶ easier to choose hyperparameters (learning rate η)

cons:

▶ ∇2f (x) is expensive to compute and apply

Q: Why not use Quasi-Newton methods like (L-)BFGS?
A: Classical QN requires full gradient evaluations
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How to approximate ∇2f (x)?

▶ from a data subsample

▶ from stale data

▶ by the secant condition (BFGS, l-BFGS)

▶ by diagonal approximation (adaHessian)

▶ by block-diagonal kronecker approximation (Shampoo,
KFAC, SENG, K-BFGS)

▶ by low rank approximation (sketchySGD)

Source: Erdogdu and Montanari, 2015, Shampoo Gupta, Koren, and Singer, 2018,

Roosta-Khorasani and Mahoney, 2019, Bollapragada, Byrd, and Nocedal, 2019,

AdaHessian Yao et al., 2021, R-SSN S. Y. Meng et al., 2020, KFAC Grosse and

Martens, 2016, SENG Yang et al., 2020, Goldfarb, Ren, and Bahamou, 2020
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Subsampling the Hessian

Hessian of f (w) = 1
n

∑n
i=1 fi (w) is

∇2f (w) =
1

m

m∑
i=1

∇2fi (w)

Subsampled Hessian is

∇̂2f (w) =
1

|S |
∑
i∈S
∇2fi (w),

where S ⊆ {1, · · · ,m} is chosen uniformly at random.

Subsampled Newton method:

wk+1 = wk − ηk

(
∇̂2f (xk)

)−1
∇̂f (wk)
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More approximations, more problems

1. complexity. Hessian of single loss fi : R
p → R costs p2 to

compute and to store

2. invertibility. Hessian approximation may not be invertible
∇̂2f (wk)

3. descent. (stochastic quasi-)Newton search direction(
∇̂2f (xk)

)−1
∇̂f (wk)

may not be a descent direction

solutions:

1. complexity. automatic differentiation

2. invertibility. use regularized Hessian approx ∇̂2 + ρI

3. descent. harder . . .
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Complexity: how to access ∇2f (w)?

our oracle: stochastic Hessian-vector products (HVPs)

1. minibatch loss f̃ (w) =
∑

i∈S fi (w) for S ⊂ {1, . . . , n}
2. compute minibatch gradient with automatic differentiation

(AD) g̃(w) = ∇f̃ (w)

3. define minibatch Hessian vector product with vector v

(∇2f̃ (w))v = ∇(g̃(w) · v)

and compute using AD on g̃(w) · v (Pearlmutter’s trick)

cost: two passes of AD ≈ 4× cost of function evaluation
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HVPs to find (stochastic quasi)-Newton direction

▶ CG (or MINRES, for indefinite ∇̂2f (x)) to compute search
direction (

∇̂2f (xk)
)−1
∇̂f (wk)

uses only HVPs
▶ problem: bad conditioning =⇒ slow convergence of CG

▶ Nystrom approximation for regularized Hessian ∇̂2 + ρI
uses only HVPs
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SketchySGD

every now and then (e.g., each epoch),

▶ sample data batch Sk to sketch subsampled Hessian

HSk
(wk) =

1

|Sk |
∑
j∈Sk

∇2fj(wk)

▶ form rank r approximation ĤSk

at each iteration k,

▶ sample data batch Bk

▶ form gradient estimate

gBk
(wk) =

1

|Bk |
∑
j∈Bk

gj(wk)

▶ take step
wk+1 = wk − ηk(ĤSk

+ ρk I )
−1gBk

(wk)
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SketchySGD is fast

computing search direction vk requires O(pr) flops:

vk = V̂
(
Λ̂ + ρk I

)−1
V̂ TgBk

+
1

ρk
(gBk

− V̂ V̂ TgBk
)

▶ the cost of a fresh low-rank Hessian approximation is
O((bhk + r2)p).

▶ given Hessian approximation, per-iteration cost is
O ((bgk + r)p).
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Relative condition number

the relative condition number is κ̂ = L̂/µ̂ where L̂ ≥ µ̂ > 0 are
defined such that for all w ,w ′ ∈ X

f (w ′) ≤ f (w) + ⟨g(w),w ′ − w⟩+ L̂

2
∥w ′ − w∥2H(w),

f (w ′) ≥ f (w) + ⟨g(w),w ′ − w⟩+ µ̂

2
∥w ′ − w∥2H(w).

(The condition number κ = L/µ is defined similarly,
replacing H(w) by I .)
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Theory: convex

Suppose fi are all smooth and convex and f is L-smooth and
µ-strongly convex. Define

λ⋆
r+1 = sup

w∈X
λr+1(H(w)).

Observe λ⋆
r+1 ≤ L and is often significantly smaller.

Corollary

Let TSketchySGD denote the iteration complexity of SketchySGD
and TSGD denote the iteration complexity of SGD given from
Theorem 4.6 in Gower, Sebbouh, and Loizou, 2021. Then

TSGD

TSketchySGD
≥ µ̂

κ̂

L

30λ⋆
r+1

.

In particular, in the case of the least-squares loss we have

TSGD

TSketchySGD
≥ L

30λ⋆
r+1

=
λ1(H)

30λr+1(H)
.
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Theory: nonconvex

assumptions

▶ f and each fi are twice differentiable and smooth

▶ f satisfies PL condition:

∥g(w)∥2 ≥ 2θ(f (w)− f (w⋆)), ∀w

▶ interpolation: optimizer w⋆ ∈ W⋆ satisfies ∥gi (w⋆)∥ = 0 for
each i ∈ {1, . . . n}

the SketchySGD iterate wt after t > 0 iterations satisfies

E[f (wt)]− f (w⋆) ≤ (1− h(θ))t (f (w0)− f (w⋆)).

▶ constant h(θ) has explicit analytical form

▶ linear convergence (optimality gap drops exponentially)
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SketchySGD: simple parameter selection

For convex problems:

▶ Batch sizes set equal bg = bh. We used 256 in these
examples.

▶ Fixed rank r = 50.
▶ Fixed regularization ρ ∈ {10−1, 10−2, 10−3} at every

iteration. Here, ρ = 10−3.
▶ Learning rate η = 1

1+100λ̂r
, where λ̂r is the r th eigenvalue

of the current subsampled Hessian approximation Ĥ.
▶ Compute a fresh approximation Ĥ after each epoch or two.

For deep learning:

▶ Batch sizes set equal bg = bh. We used 128 in this paper.
▶ Fixed rank r = 100.
▶ Fixed learning rate η = 10−2.
▶ Fixed regularization ρ = η at every iteration.
▶ Compute a fresh approximation Ĥ after each epoch or two.
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SOTAish results in deep learning

▶ SketchySGD uses the default parameter choices

▶ preconditioner is updated every 2 epochs

▶ all optimizers use the same learning rate decay
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SketchySGD is reliable (CIFAR-10)

back to ResNet-20 on CIFAR-10
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SketchySGD is near-optimal (CIFAR-10)
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SketchySGD is reliable (Miniboone)
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SketchySGD is near-optimal (Miniboone)
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SketchySGD is more reliable than SQN competitors

stochastic quasi-Newton methods for DL on MiniBoone
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SketchySGD outperforms SQN competitors
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Outline

Low rank approximation

Nyström PCG

SketchySGD

ADMM

NysADMM
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Composite optimization

minimize ℓ(Ax) + r(x)

▶ A : Rn → Rm linear

▶ ℓ : Rm → R smooth
▶ r : Rn → R proxable

▶ easy (often closed form) solution to
proxr (x) = argminy r(y) +

1
2∥x − y∥2

▶ e.g., for r(x) = ∥x∥1, proxr (x) is soft-thresholding operator
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Example: Lasso

minimize
1

2
∥Ax − b∥22 + γ∥x∥1

▶ ℓ(Ax) = 1
2∥Ax − b∥22 smooth

▶ r(x) = γ∥x∥1 proxable

▶ parameter γ > 0 controls strength of regularization

other examples: regularized logistic regression, SVM, . . .
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ADMM

consider the problem

minimize f (x) + g(z)
subject to Ax + Bz = c

Augmented Lagrangian for this problem (with dual variable y) is

Lt(x , z , y) = f (x)+g(z)+yT (Ax+Bz−c)+t/2∥Ax+Bz−c∥2

Alternating Directions Method of Multipliers (ADMM) iteration
is

x (k+1) = argmin
x

Lt(x , z
(k), y (k))

z(k+1) = argmin
z

Lt(x
(k+1), z , y (k))

y (k+1) = y (k) +
1

t
(Ax (k+1) + Bz(k+1) − c)
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ADMM

properties:

▶ converges for any t > 0 (but can be very slow)

▶ letting y = tu, equivalent to the iteration

x (k+1) = argmin
x

f (x) + t/2∥Ax + Bz(k) − c + u(k)∥2

z(k+1) = argmin
z

g(z) + t/2∥Ax (k+1) + Bz − c + u(k)∥2

u(k+1) = u(k) + Ax (k+1) + Bz(k+1) − c

▶ frequently used for distributed optimization:
problems decouple if A or B is diagonal
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Equivalence between iterative algorithms for

optimization

Figure: relations between DR, ADMM, and Chambolle-Pock.

Source: [Zhao, Lessard, and Udell (2021)]
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ADMM for statistical learning

Algorithm ADMM

1 Input: loss function ℓ ◦ A, regularization r , stepsize ρ,
2 initial z0, u0 = 0
3 for k = 0, 1, . . . do
4 xk+1 = argminx{ℓ(Ax) + ρ

2∥x − zk + uk∥22}
5 zk+1 = prox 2

ρ
r(z)(x

k+1 + uk)

6 uk+1 = uk + xk+1 − zk+1

return x⋆ (nearly) minimizing ℓ(Ax) + r(x)
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1 Input: loss function ℓ ◦ A, regularization r , stepsize ρ,
2 initial z0, u0 = 0
3 for k = 0, 1, . . . do
4 xk+1 = argminx{ℓ(Ax) + ρ

2∥x − zk + uk∥22}
5 zk+1 = argminz{r(z) + ρ

2∥xk+1 − z + uk∥22}
6 uk+1 = uk + xk+1 − zk+1

return x⋆ (nearly) minimizing ℓ(Ax) + r(x)

problem: x-min involves the (large) data: not easy to solve!

solution: inexact ADMM

▶ solve x-min approximately with error εk

▶ converges if
∑

k ε
k <∞ [Eckstein and Bertsekas (1992)]

add randNLA: use Nyström PCG to speed up x-min
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Quadratic approximation

if ℓ is twice diffable, approximate obj near prev iterate xk

ℓ(Ax) ≈ ℓ(Axk)+(x−xk)TAT∇ℓ(Axk)+1

2
(x−xk)TATHℓ(Ax

k)A(x−xk)

where Hℓ is the Hessian of ℓ.

with this approximation, x-min becomes linear system: find x so

(ATHℓ(Ax
k)A+ ρI )x = rk

where rk = ρzk − ρuk + ATHℓ(Ax
k)Axk − AT∇ℓ(Axk)

59 / 69



Quadratic approximation

if ℓ is twice diffable, approximate obj near prev iterate xk

ℓ(Ax) ≈ ℓ(Axk)+(x−xk)TAT∇ℓ(Axk)+1

2
(x−xk)TATHℓ(Ax

k)A(x−xk)

where Hℓ is the Hessian of ℓ.

with this approximation, x-min becomes linear system: find x so

(ATHℓ(Ax
k)A+ ρI )x = rk

where rk = ρzk − ρuk + ATHℓ(Ax
k)Axk − AT∇ℓ(Axk)

59 / 69



Nyström PCG to solve ADMM subproblem

(ATHℓ(x
k)A+ ρI )x = rk

▶ ATHℓ(x
k)A has data in it =⇒ fast spectral decay

▶ stepsize ρ regularizes linear system

▶ if ℓ is quadratic (e.g., lasso and SVM), Hℓ(x
k) = Hℓ is

constant, so only need to sketch ATHℓA once

in theory:

▶ solve to tolerance ϵk at iteration k , where
∑

k ϵ
k <∞

▶ if sketch size s ≈ deff(ρ), need ≤ O(log(1/ϵk)) CG steps

in practice:

▶ set ϵk = geomean(primal resid, dual resid)

▶ set sketch size s = 50
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NysADMM algorithm

Algorithm NysADMM

1 input loss function ℓ ◦A, regularization r , stepsize ρ, positive
summable sequence {εk}∞k=0, initial z

0, u0 = 0
2 for k = 0, 1, . . . do
3 compute rk = ρzk−ρuk+ATHℓ(Ax

k)Axk−AT∇ℓ(Axk)
4 use Nyström PCG to find εk -apx solution xk+1 to

(ATHℓ(Ax
k)A+ ρI )xk+1 = rk

5 zk+1 = argminz{r(z) + ρ
2∥xk+1 − z + uk∥22}

6 uk+1 = uk + xk+1 − zk+1

7 return x⋆ (nearly) minimizing ℓ(Ax) + r(x)

Source: Zhao, Frangella, and Udell, 2022
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The competition

lasso:

▶ SSNAL, a Newton augmented Lagrangian method
[Li, Sun, and Toh (2018)]

▶ mfIPM, a matrix-free interior point method
[Fountoulakis, Gondzio, and Zhlobich (2014)]

▶ glmnet, a coordinate-descent method
[Friedman, Hastie, and Tibshirani (2010)]

logistic regression:

▶ SAGA, a stochastic average gradient method
[Defazio, Bach, and Lacoste-Julien (2014)]

SVM:

▶ LIBSVM, a sequential minimal optimization (pairwise
coordinate descent) method [Chang and Lin (2011)]
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Numerical experiments: settings

▶ pick datasets with n > 10, 000 or d > 10, 000 from
LIBSVM, UCI, and OpenML.

▶ use random feature map to generate more features

▶ use same stopping criterion and parameter settings as the
standard solver for each problem class

▶ constant sketch size s = 30
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Lasso results

stl10 dataset. stop iteration when

∥x − proxγ∥·∥1(x − AT (Ax − b))∥
1 + ∥x∥+ ∥Ax − b∥ ≤ ϵ.
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Lasso results

Task
Time for ϵ = 10−1 (s)

NysADMM mfIPM SSNAL glmnet
STL-10 165 573 467 278
CIFAR-10-rf 251 655 692 391
smallNorb-rf 219 552 515 293
E2006.train 313 875 903 554
sector 235 678 608 396
realsim-rf 193 – 765 292
rcv1-rf 226 563 595 273
cod-rna-rf 208 976 865 324
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ℓ1-regularized logistic regression results

Table: Results for ℓ1-regularized logistic regression experiment.

Task NysADMM time (s) SAGA (sklearn) time (s)
STL-10 3012 6083
CIFAR-10-rf 7884 21256
p53-rf 528 2116
connect-4-rf 866 4781
smallnorb-rf 1808 6381
rcv1-rf 1237 3988
con-rna-rf 7528 21513
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Support vector machine results

NysADMM is ≥ 5× faster, although code is pure python!

Table: Results of SVM experiment.

Task NysADMM time (s) LIBSVM time (s)
STL-10 208 11573
CIFAR-10 1636 8563
p53-rf 291 919
connect-4-rf 7073 42762
realsim-rf 17045 52397
rcv1-rf 564 32848
cod-rna-rf 4942 36791
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What approximations are allowed?

Source: Frangella et al., 2023
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Conclusion

low rank structure is everywhere! use it to accelerate

▶ top-k eigenvalue decomposition

▶ (regularized) linear system solve: (A+ µI )x = b

▶ composite optimization: minimize ℓ(x) + r(x)

▶ stochastic gradient descent

▶ . . . your favorite problem . . . ?
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