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Outline

Subgradients
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Basic inequality

recall basic inequality for convex differentiable f:

fly) > f(x)+ VF(x) T (y — x)

» first-order approximation of f at x is global underestimator
> (Vf(x),—1) supports epif at (x, f(x))

what if f is not differentiable?
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Non-differentiable functions

are these functions differentiable?
> |t| fort €R
» ||x||1 for x € R”
> |IX]||« for X € R™"
> max,-a,-Tx—Fb,- for x € R”
» Amax(X) for X € R™"
| 2

indicators of convex sets C

if not, where? can we find underestimators for them?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if
fly)>f(x)+g"(y—x) forally

picture
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Q: Can a function f have > 1 subgradient at a point x?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if
fly)>f(x)+g"(y—x) forally

picture

Q: Can a function f have > 1 subgradient at a point x?
A: Yes, if f is nonsmooth at x
Q: Can a function f have no subgradient at a point x?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if
fly)>f(x)+g"(y—x) forally

picture

Q: Can a function f have > 1 subgradient at a point x?
A: Yes, if f is nonsmooth at x

Q: Can a function f have no subgradient at a point x?
A: Yes, if x does not lie on convex hull of f
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Subgradients and convexity

> g is a subgradient of f at x iff (g, —1) supports epif at
(x, f(x))

» g is a subgradient iff f(x) + g7 (y — x) is a global (affine)
underestimator of f

» if f is convex and differentiable, V£(x) is a subgradient of
f at x
subgradients come up in several contexts:

» algorithms for nondifferentiable convex optimization

» convex analysis, e.g., optimality conditions, duality for
nondifferentiable problems

(if f(y) < f(x)+g7(y —x) for all y, then g is a supergradient)
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Subdifferential

set of all subgradients of f at x is called the subdifferential of
f at x, denoted Of(x)

Of(x)={g: fly) > f(x)+g"(y —x) Vy}

for any f,

> Of(x) is a closed convex set (can be empty)
> Of(x) =0 if f(x) =00

proof: use the definition
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Subdifferential

set of all subgradients of f at x is called the subdifferential of
f at x, denoted Of(x)

Of(x)={g: fly) > f(x)+g"(y —x) Vy}

for any f,
> Of(x) is a closed convex set (can be empty)
> Of(x) =0 if f(x) =00

proof: use the definition

if fis convex,

» Jf(x) is nonempty, for x € relintdom f
» Of(x) = {Vf(x)}, if f is differentiable at x
> if Of(x) = {g}, then f is differentiable at x and g = Vf(x)
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Compute subgradient via definition
g € Of(x) iff
f(y) > f(x)+g"(y —x) Vy € dom(f)

example. let f(x) = |x| for x € R. suppose s € sign(x), where

{1} x>0
sign(x) = ¢[-1,1] x=0
—{1} x<o.

then

f(y) = max(y,—y) > sy =s(x +y —x) = [x| +s(y — x)
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Compute subgradient via definition
g € Of(x) iff
f(y) > f(x)+g"(y —x) Vy € dom(f)

example. let f(x) = |x| for x € R. suppose s € sign(x), where

{1} x>0
sign(x) = ¢[-1,1] x=0
—{1} x<o.

then

f(y) = max(y,—y) > sy =s(x +y —x) = [x| +s(y — x)

so sign(x) C 9f(x) (in fact, holds with equality)

picture
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Compute subgradient via definition
g edf(x) < f(y)>f(x)+g"(y—x) Vyedom(f)

example. let f(x) = max; a] x + b;.

10/56



Compute subgradient via definition
g cof(x) <= f(y)>f(x)+g"(y—x) Vy e dom(f)
example. let f(x) = max; a] x + b;. then for any i,
fly) = maxaly+b
aly + b;
al (x+y —x)+ b
al x+bi +al (y —x)
= f(X)+aIT(y_X)7

where the last line holds for i € argmax; aJTX + bj. so

> a; € Of(x) for each i € argmax; aJ-Tx + b;
» Of(x) is convex, so

Co{a; : i € argmax aJ-Tx + b;} C 0f(x)
J
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Compute subgradient via definition
geIf(x) = fy)>f(x)+g"(y—x) Vy € dom(f)
example. let f(X) = Apax(X).
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Compute subgradient via definition
geIf(x) = fy)>f(x)+g"(y—x) Vy € dom(f)
example. let f(X) = Apax(X). then

f(Y) = sup v Yv
Ivii<i
= sup v X+Y—-X)v, |v|<1
Ivii<1
= sup (vTXv+vT(Y—X)v), lv|| <1
Ivii<1
= viXv+tr(w'(Y —X)), veargmaxv'Xv
Ivii<1
= )\max(X)+tr(VVT(Y_X))7 veargmavaXv
[vil<t

> w' € 9f(X) for each v € argmax|,| <1 v Xv
» Of(x) is convex, so

Co{w' : v € argmaxv'Xv} C 9f(x)
lvl<1 11/56



Outline

Subgradient properties
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Properties of subgradients

subgradient inequality:

geif(x) « f(y)>f(x)+g"(y—x) Vyedom(f)

for convex f, we'll show
» subgradients are monotone: for any x,y € domf,

gy € 0f(y), and g« € Of(x),

(& —&) (y—x) >0

> Of(x) is continuous: if f is (lower semi-)continuous,
xK) = x, gk — g, and g(k) € 9f(x(K) for each k, then
g € Of(x)

> Of(x) = argmax g’ x — f(x)

these will help us compute subgradients
13/56



Subgradients are monotone

fact. for any x,y € domf, g, € 9f(y), and g« € Of(x),
(8 —&) (y—x) >0
proof. same as for differentiable case:

fly) > f(x)+&l (y—x)  f(x)>f(y)+g (x—y)

add these to get

(8 —&) (y—x) >0
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Subgradients are preserved under limits
subgradient inequality:
g e if(x) < f(y)>f(x)+g"(y—x) Vy e dom(f)
fact. if f is (lower semi-)continuous, x(K) — x, g(k) — g, and

g¥) € 9f (x(K)) for each k, then g € 9f(x)

proof.
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Subgradients are preserved under limits

subgradient inequality:

g edf(x) —= f(y)>f(x)+g"(y—x) Vyedom(f)

fact. if f is (lower semi-)continuous, x(K) — x, g(k) — g, and
g¥) € 9f (x(K)) for each k, then g € 9f(x)

proof. For each k and for every y,

Fly) > x4+ (g¥)T(y — xt)
Jim £(y) > lim F(x5) + (g T(y = x19)
fly) > f(x)+g"(y—x)

moral. To find a subgradient g € 9f(x), find points x(¥) — x
where f is differentiable, and let g = limy_,oo VF(x(¥).
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Subgradients are preserved under limits: example

consider f(x) = |x|. we know

{-1} x<0
of(x)=¢ 7 X =
{1} x>0

SO

> lim, o+ V(x) = 1
» lim,_,o- V(x) = -1

hence

16 /56



Subgradients are preserved under limits: example

consider f(x) = |x|. we know

{-1} x<0
af(x){ ? x=0
{1} x>0

so
> lim, o+ V(x) =1
» lim,_,o- V(x) = -1
hence
» —1 € 0f(0) and —1 € 9f(0)
> 0f(0) is convex, so [—1,1] C 9f(0)
» and 0f(0) is monotone, so [—1,1] = 9f(0)
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Convex functions can’t be very non-differentiable

Rockafellar, Convex Analysis, Thm 25.5 a convex function f is
differentiable almost everywhere on the interior of its domain.
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Convex functions can’t be very non-differentiable

Theorem

Rockafellar, Convex Analysis, Thm 25.5 a convex function f is
differentiable almost everywhere on the interior of its domain.

corollary: pick x € dom f uniformly at random. then f is
differentiable at x w/prob 1.
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Convex functions can’t be very non-differentiable

Theorem

Rockafellar, Convex Analysis, Thm 25.5 a convex function f is
differentiable almost everywhere on the interior of its domain.

corollary: pick x € dom f uniformly at random. then f is
differentiable at x w/prob 1.

corollary: For a convex function f and any x, there is a
sequence of points x(k) — x where f is differentiable.

17/56



Subgradients and fenchel conjugates

fact. g € 0f(x) <= f*(g)+f(x)=g"x
(recall the conjugate function f*(g) = sup, g x — f(x).)
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Subgradients and fenchel conjugates
proof. if f*(g) + f(x) = g"x,
f*(g) = supg’y —f(y)
y
> gly—fly) Wy
fly) > g'y—f(g) Vy
= g'y—g'x+f(x) Vy
= g'(y—x)+f(x) vy

so g € Of(x). conversely, if g € Of(x),
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Subgradients and fenchel conjugates
proof. if f*(g) + f(x) = g"x,
f*(g) = supg’y —f(y)
y
g'y—fly) Wy
gly—f(g) Wy
= g'y—g'x+f(x) Vy
= g'(y—x)+f(x) vy

AVARLYS

f(y)

so g € Of(x). conversely, if g € Of(x),

fly) > g'(y—x)+f(x)
gix—f(x) > gly—f(y)
supg’x—f(x) > supg’y—f(y)
y y
g'x—f(x) > fg)
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Subgradients and fenchel conjugates

Conclusion.

geIf(x) = f(g)+f(x)=g'x
— xecargmaxg'x—f(x)

consider the same implications for the function *:
x €0f*(g) = f(x)+f(g)=x"g

— gecargmaxg x—f*(g)
g

so all these conditions are equivalent, and
g € 0f(x) < x € 9f*(g)!
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Compute subgradient via fenchel conjugate

Of (x) = argmax g " x — f*(g)
g

example. let f(x) = ||x||1. compute

f*(g) = supg’x— x|
X
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Compute subgradient via fenchel conjugate

Of (x) = argmax g " x — f*(g)
g

example. let f(x) = ||x||1. compute
f'(g) = supg’x—|lx|s
X

_ {o lglloo < 1

oo otherwise
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Compute subgradient via fenchel conjugate

Of (x) = argmax g " x — f*(g)
g

example. let f(x) = ||x||1. compute

f*(g) = supg’x— x|
X

_ {o lglloo < 1

oo otherwise
given x,

Of(x) = argmaxg'x— f*(g)
g

— argmaxg'x
llglleo <1

= sign(x)

where sign is computed elementwise.
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Compute subgradient via fenchel conjugate
Of(x) = argmax g " x — f*(g)
g

example. let 7(X) = || X||.. compute
*(G) = suptr(G,X)—||X]-«
X
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Compute subgradient via fenchel conjugate
Of(x) = argmax g " x — f*(g)
g

example. let 7(X) = || X||.. compute
*(G) = suptr(G,X)—||X]-«
X

)0 6l <1
oo otherwise

where ||G|| = 01(G) is the operator norm of G.
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Compute subgradient via fenchel conjugate
Of (x) = argmax g " x — f*(g)
g

example. let 7(X) = || X||.. compute
*(G) = suptr(G,X)—||X]-«
X

_ {o l6l <1
oo otherwise
where ||G|| = 01(G) is the operator norm of G.
given X = U diag(o)V'T,
of(x) = argglaxtr(G,X) —*(G)

= argmaxtr(G, X)
lell<t

— Udiag(sign(c))V"

where sign is computed elementwise.
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Subgradient method
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Subgradient method

the subgradient method is a simple algorithm to minimize
nondifferentiable convex function f

D) ) _ g g0)

> x(k) is the kth iterate
> gk is any subgradient of f at x(K)
» «ay > 0 is the kth step size
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> x(k) is the kth iterate
> gk is any subgradient of f at x(K)
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Subgradient method

the subgradient method is a simple algorithm to minimize
nondifferentiable convex function f

D) ) _ g g0)

> x(k) is the kth iterate
> gk is any subgradient of f at x(K)
» «ay > 0 is the kth step size

warning: subgradient method is not a descent method.
instead, keep track of best point so far

k . i
fren = min F(x1)

=1,...
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How to avoid slow convergence

don't use subgradient method for very high accuracy!
instead,

» for high accuracy: rewrite problem as LP or SDP; use IPM
» for medium accuracy:
> regularize your objective (so it's strongly convex)

F(x) = f(x) +allx = x°)?
> smooth your objective (so it's smooth)
F(x) = Eyy—xi<sf(¥)
> infimal convolution (so it's smooth and strongly convex):

Fx) = inf £(y) + Elly = xIP
y

P> more on these later. ..
» for low accuracy: use a constant step size; terminate when
you stop improving much or get bored
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Proximal operators
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Proximal operator
define the proximal operator of the function f : R — R

1
prox;(x) = argmin(f(z) + ||z = x[3)
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Proximal operator
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Proximal operator
define the proximal operator of the function f : R — R

1
prox;(x) = argmin(f(z) + ||z = x[3)

> prox; : R — R
» generalized projection: if 1¢ is the indicator of set C,

prox; (w) = MN¢(w)

> implicit gradient step: if z = prox,(x)

of(z)+z—x = 0
z = x—0f(z)
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Maps from functions to functions

no consistent notation for map from functions to functions.

for a function f : RY = R,
» prox maps f to a new function prox; : RY — RY
> prox,(x) evaluates this function at the point x

> V maps f to a new function Vf : R — RY
> Vf(x) evaluates this function at the point x
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : RY — R

1
prox; (x) = argmin(f(2) + 31z - x|3)

> f(x)=0
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Let’s evaluate some proximal operators!
define the proximal operator of the function f : RY — R
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Let’s evaluate some proximal operators!
define the proximal operator of the function f : RY — R
. 1 2
prox;(x) = argmin(f(2) + 5|z — x|3)
z
> f(x) =0 (identity)
=X

2 (shrinkage)
» f(x) = |x| (soft-thresholding)

29/56



Let’s evaluate some proximal operators!

define the proximal operator of the function f : RY — R

1
prox; (x) = argmin(f(2) + 31z - x|3)

> f(x) =0 (identity)

» f(x) = x? (shrinkage)

» f(x) = |x| (soft-thresholding)
> f(x)=1(x>0)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : RY — R

1
prox; (x) = argmin(f(2) + 31z - x|3)

> f(x) =0 (identity)

» f(x) = x? (shrinkage)

» f(x) = |x| (soft-thresholding)
» f(x)=1(x > 0) (projection)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : RY — R

1
prox; (x) = argmin(f(2) + 31z - x|3)

> f(x) = (|dentity)

» f(x) = x? (shrinkage)

> f(x)= ]x] (soft-thresholding)
» f(x)=1(x > 0) (projection)
> f(x) = filx)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : RY — R

1
prox; (x) = argmin(f(2) + 31z - x|3)

> f(x) = (|dentity)

» f(x) = x? (shrinkage)

> f(x)= ]x] (soft-thresholding)
» f(x)=1(x > 0) (projection)

> f(x) = Z fi(x;) (separable)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : RY — R

VVvyVvyVvyYVvyy

1
prox; (x) = argmin(f(2) + 31z - x|3)

f(x) = (|dentity)

f(x) = x? (shrinkage)

f(x)= ]x] (soft-thresholding)
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f(x) = Z fi(x;) (separable)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : RY — R

VVYyVYVVYVY

1
prox; (x) = argmin(f(2) + 31z - x|3)

f(x) = (|dent|ty)

f(x) = x? (shrinkage)

f(x)= ]x] (soft-thresholding)

f(x) = 1(x > 0) (projection)

f(x) = Z fi(x;) (separable)

f(x) = ||x|l1 (soft-thresholding on each index)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : RY — R

VVYyVYVVYVY

1
prox; (x) = argmin(f(2) + 31z - x|3)

f(x) = (|dent|ty)

f(x) = x? (shrinkage)

f(x)= ]x] (soft-thresholding)

f(x) = 1(x > 0) (projection)

f(x) = Z fi(x;) (separable)

f(x) = ||x|l1 (soft-thresholding on each index)
f(X) = || X||« (soft-thresholding on singular values)
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Proxable functions

we say a function f is proxable if it's easy to evaluate prox,(x)

all examples from previous slide are proxable
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Outline

Proximal gradient method
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Proximal gradient method

suppose f is smooth, g is non-smooth. solve
minimize f(x) + g(x)

using proximal operators together with gradient steps?
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Proximal gradient method

suppose f is smooth, g is non-smooth. solve
minimize f(x) + g(x)
using proximal operators together with gradient steps? idea:

xT = prox, (x — tVf(x))

» the proximal operator gives a fast method to step towards
the minimum of g

» gradient method works well to step towards minimum of f
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Proximal gradient: examples

» projected gradient g(x) = 1(Q2)(x)

> nonnegative least squares: f(x) = 3||Ax — b||3,
g(x) = Alixlh

> lasso: (x) = 3[1Ax — bl3 g(x) = Allxll

> ...
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Relations
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Functions

in much of what follows, we'll need to assume functions are

» closed: epi(f) is a closed set
» convex: f is convex

» proper: dom f is non-empty

which we abbreviate as CCP
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Relations

(x,0f(x)) and (x, prox¢(x)) define relations on R"

> a relation R on R” is a subset of R” x R”

» domR = {x:(x,y) € R}

» let R(x) ={y:(x,y) € R}

» if R(x) is always empty or a singleton, we say R is a
function

» any function f : R — R" defines a relation
{(x,f(x)): x € domf}
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vVvyVvyVvyy

Relations: examples

empty relation: ()

full relation: R" x R"

identity: {(x,x) : x € R"}

zero: {(x,0):x € R"}

subdifferential: {(x,g:x € domf,g € 0f(x)}
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Operations on relations

if R and S are relations, define

» composition: RS = {(x,z) : (x,y) € R,(y,z) € S}
» addition: R+ S ={(x,y+2z):(x,y) € R, (x,z) € 5}
» inverses: R~1 = {(y,x): (x,y) € R}

use inequality on sets to mean the inequality holds for any
element in the set, e.g.,

fly) > f(x)+0f T (y —x)
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Example: fenchel conjugates and the subdifferential

if £ is CPP, (f*)* = f** = f, s0

(u,v) € (0F)1

this shows 9f* = 9f 1

[ A A

(v,u) € Of

u € 0f(v)
0€df(v)—u

v € argmin(f(x) — u” x)

v € argmax(u’ x — f(x))

f(v)+ f(u)=u"v

u € argmax(y v — f*(y))
y

0ev—0f(u)
(u,v) € OfF
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Fixed points
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Zeros of a relation

> x is a zero of R if 0 € R(x)
> the zero set of R is R71(0) = {x : (x,0) € R}
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Zeros of a relation

> x is a zero of R if 0 € R(x)
> the zero set of R is R71(0) = {x : (x,0) € R}

x is a zero of Of iff x solves minimize f(x)
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Lipschitz operators

relation F has Lipschitz constant L if for all (x,u) € F and

(y,v) €F,
|u—v| < Lx—yl

fact: if F is Lipschitz, then F is a function.
proof:
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Lipschitz operators

relation F has Lipschitz constant L if for all (x,u) € F and

(y,v) €F,
|u—v| < Lx—yl

fact: if F is Lipschitz, then F is a function.
proof: if (x,u) € F and (x,v) € F,

lu—v[| < Lllx —x|| =0

» the relation F is nonexpansive if L <1
» the relation F is contractive if L <1
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Gradient update is contractive for SSC functions

suppose f is a-strongly convex and -smooth. the relation
I —tVf ={(x,x — tVf(x)): x € domf}

is Lipschitz with parameter L = max{|1 — ta/|, |1 — tf|}.
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Gradient update is contractive for SSC functions

suppose f is a-strongly convex and -smooth. the relation
I —tVf ={(x,x — tVf(x)): x € domf}

is Lipschitz with parameter L = max{|1 — ta/|, |1 — tf|}.
e 2 |
corollary: if t = o L= Bg
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Gradient update is contractive for SSC functions

suppose f is a-strongly convex and -smooth. the relation
I —tVf ={(x,x — tVf(x)): x € domf}

is Lipschitz with parameter L = max{|1 — ta/|, |1 — tf|}.
corollary: if t = aiﬁ' [ =5l

k+1
hint: use the fundamental theorem of calculus
1
(I=tVEH)(x)—(I-tV)(y) = / (l—tsz(Hx—i-(l—O)y))(x—y)dt
0
and Jensen's inequality

H / £t < / ()t

source: Ryu and Yin (
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Gradient update is contractive for SSC functions

suppose f is a-strongly convex and [3-smooth. the relation
I —tVf ={(x,x — tVf(x)) : x € domf}

is Lipschitz with parameter L = max{|1 — ta/|, |1 — tf|}.
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Gradient update is contractive for SSC functions

suppose f is a-strongly convex and [3-smooth. the relation
I —tVf ={(x,x — tVf(x)) : x € domf}

is Lipschitz with parameter L = max{|1 — ta/|, |1 — tf|}.

proof:
[(1 =tV E)(x) = (I = tV)(y)ll

- H/ol(l_tvzf(eer(l_Q)Y))(X—Y)dtH
< /01 [(1 = tV2F(0x + (1 — 0)y))(x — y)| dt

1

< [ max((1 - tal. 1 e8l)de ]
0

— max(|1  tal,[1 - tB]) | — ]
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Proximal map is nonexpansive

the proximal map of any convex function f is nonexpansive:

Iproxe(y) — proxs(x)] < [ly - x|
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Proximal map is nonexpansive

the proximal map of any convex function f is nonexpansive:

Iproxe(y) — proxs(x)] < [ly - x|

proof: let u = proxs(x) and v = prox(y), so
x —u € 0f(u), y —v e of(v)
then by the subgradient inequality,
f(v) > f(u)+{x—u,v—u) and f(u) > f(v)+{y—v,u—v)
add these to show
0 >
(x—yu—v) = [lu—v|?
Ix =yl =

(y—=—x+u—v,u—v)

lu = v]]

» second line shows prox, is firmly nonexpansive

» third line uses Cauchy-Schwarz to show it is nonexpansive )56



Proximal map is contractive for SC functions

the proximal map of an a-SC function f is ﬁ-contractive:

[prox; (y) — prox,(x)] < ly = x|

1+ 2«
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Proximal map is contractive for SC functions

the proximal map of an a-SC function f is ﬁ-contractive:

[prox; (y) — prox,(x)] < ly = x|

1+ 2«

proof: let u = proxs(x) and v = prox,(y), so
x —u € 0f (u), y —v e df(v)
by strong convexity
flv) > flu)+ (x—u,v—u)+alv—ul?
flu) > F(v)+{y—v,u—v)+alu—v|?

add these to show

0 > (y—x+u—v,u—v)+2lu—v|?
—yu—v) > (1+20)|u— v
Ix =yl = llu=vl

142«
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Fixed points

x is a fixed point of F if x = F(x)
examples:

» F(x) = x: every point is a fixed point
» F(x)=0: only 0 is a fixed point
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Fixed points

x is a fixed point of F if x = F(x)

examples:

» F(x) = x: every point is a fixed point
» F(x)=0: only 0 is a fixed point
» a contractive operator on R” can have at most one FP
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Fixed points

x is a fixed point of F if x = F(x)

examples:
» F(x) = x: every point is a fixed point
» F(x)=0: only 0 is a fixed point
» a contractive operator on R” can have at most one FP

proof: if x and y are FPs,
Ix =yl = [[F(x) — F(y)|| < ||x — y|| contradiction
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Fixed points

x is a fixed point of F if x = F(x)

examples:

» F(x) = x: every point is a fixed point

» F(x)=0: only 0 is a fixed point

» a contractive operator on R” can have at most one FP
proof: if x and y are FPs,
Ix =yl = [[F(x) — F(y)|| < ||x — y|| contradiction

» a nonexpansive operator F need not have a fixed point
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Fixed points

x is a fixed point of F if x = F(x)

examples:

» F(x) = x: every point is a fixed point

» F(x)=0: only 0 is a fixed point

» a contractive operator on R” can have at most one FP
proof: if x and y are FPs,
Ix =yl = [[F(x) — F(y)|| < ||x — y|| contradiction

» a nonexpansive operator F need not have a fixed point
proof: translation
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Fixed point iteration

to find a fixed point of F, try the fixed point iteration

xUF1) = F(x ()
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Fixed point iteration

to find a fixed point of F, try the fixed point iteration

xUF1) = F(x ()

Q: when does this converge?
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Fixed point iteration: contractive

Banach fixed point theorem: if F is a contraction, the

iteration
(k1) — F(x("))

converges to the unique fixed point of F

properties: if L is the Lipschitz constant of F,

» distance to fixed point decreases monotonically:
XD — x| = [ F(xW) — FO)I| < LIXP — x|

(iteration is Fejer-monotone)

» linear convergence with rate L
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Proof

proof:
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Proof

proof: if F has Lipschitz constant L < 1,

> sequence x(¥) is Cauchy:

HX(kJrZ) . X(k)H < ||X(k+€) - X(k+ffl)H 4t ||X(k+1) o X(k)H
< (L7 1) — (R
1
< |y (k1) (k)
< il )
Lk
< (1) _ ,(0)
< T X

> so it converges to a point x*. must be the (unique) FP!

» converges to x* linearly with rate L

x| = [ FOE)=F )| < LlxED =] < L0 —x|
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Outline

Averaged operators
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Fixed point iteration: nonexpansive

if F is nonexpansive, the iteration
(k1) — F(x("))

need not converge to a fixed point even if one exists.

proof:
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Fixed point iteration: nonexpansive

if F is nonexpansive, the iteration
(k1) — /:(X(k))

need not converge to a fixed point even if one exists.

proof:

» let F rotate its argument by 6 degrees around the origin.
» then F is nonexpansive and has a fixed point at x* = 0.
> but if |x(O] = r, then ||F(x(¥)|| = r for all k.
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Averaged operators

an operator F is averaged if
F=0G+(1-06)l

for 6 € (0,1), G nonexpansive
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Averaged operators

an operator F is averaged if
F=0G+(1-0)l
for @ € (0,1), G nonexpansive

fact: if F is averaged, then x if FP of F <= x is FP of G
proof:
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Averaged operators

an operator F is averaged if
F=0G+(1-0)l
for @ € (0,1), G nonexpansive

fact: if F is averaged, then x if FP of F <= x is FP of G
proof:

x = Fx=0Gx+(1—-0)Ix=60Gx+ (1 —6)x
O0x = 0Gx

x = Gx

— if G is nonexpansive, F = %I + %G is averaged with same
FPs

53/56



Fixed point iteration: averaged

if F=60G+ (1—0)l is averaged (0 € (0,1), G nonexpansive),
the iteration
slk4+1) — F(x("))

converges to a fixed point if one exists.

(also called the damped, averaged, or Mann-Krasnosel'skii
iteration.)

properties: Ryu and Boyd ( )
» distance to fixed point decreases monotonically

(Fejer-monotone)

» sublinear convergence of fixed point residual

1

(k) _ ()2 <
e =" = e —o

1@ =12
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Gradient descent operator is averaged

follows Ryu and Yin (2022)
fact: if f : R" — R is 3-smooth, then [ — %Vf iS non-expansive
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Gradient descent operator is averaged

follows Ryu and Yin ( )

fact: if f : R” — R is 8-smooth, then | — %Vf iS non-expansive

proof: since f is S-smooth,
2 4
EVf)(y)II2 = Ix=yl>- 2

2
101 = EW)(X) - (- 3

<(x — v, VFf(x)

IN

Ix = ylI?
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Gradient descent operator is averaged

follows Ryu and Yin ( )
fact: if f : R” — R is 8-smooth, then | — %Vf iS non-expansive

proof: since f is S-smooth,

2

VNI = I —y]? —

2
101 = EW)(X) - 3

<(x — v, VFf(x)

< x=yl?

corollary: if f : R” — R is 8-smooth, then | — tVf is averaged
for t € (0, %)
since | —tVf =(1— %)I + 8-
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When does proximal gradient converge?

proximal gradient converges at rate O(1/k) when | — tVf is
averaged and prox,, is nonexpansive

» if f is S-smooth and step size t € (0, %)

» and g is convex

proximal gradient converges linearly when, in addition, | — tVf
Or Prox,, is contractive

» if f is B-smooth and a—strongly convex and
max(|1 — tal,|1 —t8]) < 1
» or if g is strongly convex
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