CME 307 / MS&E 311: Optimization

Newton and quasi-Newton methods

Professor Udell

Management Science and Engineering
Stanford

May 7, 2023

1/33

Questions from Ed

» well-conditioned vs ill-conditioned

» why approximate Hessian with % 7

2/33

Outline

Quadratic approximation

3/33

Minimize quadratic approximation

minimize f(x)

Suppose f : R — R is twice differentiable. For any x € R,
approximate f about x:

f(x) ~ F(xB)+F(xK)T(x — xk)
300) TV () (x — x9)
~ f(x0) + VF(xN)Ts 4 %STB/(S =: my(x)
where s = x — x(K) is the search direction and B, ~ V2f(x(¥)
is the Hessian approximation.
If By = 0, my is convex. to minimize,
Bis+ Vi(x¥) =0

if By is invertible,
s =B tVf(x)

4/33

Why do we need B, - 07?7

1
x+1) — argmin my(x) = argmin f(x) + VF(xK)Ts + ESTBkS

5/33

Why do we need B, - 07?7

x+1) — argmin my(x) = argmin f(x) + VF(xK)Ts + %STBkS

Q: What happens if By is indefinite?

5/33

Why do we need B, - 07?7

1
x+1) — argmin my(x) = argmin f(x) + VF(xK)Ts + ESTBkS

Q: What happens if By is indefinite?
A: Go in the direction of negative curvature; but not clear how
far to go.

5/33

Why do we need B, - 07?7

1
x+1) — argmin my(x) = argmin f(x) + VF(xK)Ts + ESTBkS

Q: What happens if By is indefinite?

A: Go in the direction of negative curvature; but not clear how
far to go.

Q: What happens if By is not invertible?

5/33

Why do we need B, - 07?7

1
x+1) — argmin my(x) = argmin f(x) + VF(xK)Ts + ESTBkS

Q: What happens if By is indefinite?

A: Go in the direction of negative curvature; but not clear how
far to go.

Q: What happens if By is not invertible?

A: Not clear how far to go in flat directions.

5/33

Why do we need B, - 07?7

x+1) — argmin my(x) = argmin f(x) + VF(xK)Ts + %STBkS

Q: What happens if By is indefinite?

A: Go in the direction of negative curvature; but not clear how
far to go.

Q: What happens if By is not invertible?

A: Not clear how far to go in flat directions.

in practice

» make it psd. modify By to be positive definite

» trust region method. minimize nonconvex my over a ball

5/33

Which quadratic approximation?

» Gradient descent. use By = %l for some t > 0.
s = —tVf(x)
» Newton’s method. use By = Vf(x).
s = —(V?f(x))"*VF(x)
» Quasi-Newton methods. use B, ~ V2f(x(K).
s=—B, 'Vf(x)

global convergence as long as my(x) > f(x) for all x. but how
fast?

6/33

Outline

Newton's method

7/33

Convergence rates

» linear convergence.

B
Jm D — e~ €€ (O
» superlinear convergence.
x5 — x|
lim ————— =
k—oo ||x(k=1) — x*||
» quadratic convergence.
(k) _ x*
jim X =Xy

e x (k1) — |2

8/33

Newton’s method converges quadratically

Theorem (Local rate of convergence)

Suppose f is twice ctsly differentiable and V?f(x) is L-Lipschitz
in a neighborhood of a strict local minimizer x* € argmin f(x).
Then Newton’s method converges to x* quadratically near x*.

recall an operator F is L-Lipschitz if

IF(x) = FW)I < Llix =yl

9/33

Taylor’s theorem

since f is twice continuously differentiable,
1
VEY) - V1) = [VPFOct ey~ X))y - x)de
0

source: https://www.cambridge.org/core/books/optimization-for-data-
analysis/C02C3708905D236AA354D1CE1739A6A2

10/33

Newton’s method converges quadratically (1)

proof: x* is strict local min, so Vf(x*) = 0 and V2f(x*) = 0.
k1) oy = (k) o g(k)
x k) — e — B,:lVf(x(k)) > (Newton's method)
- (BWUJ(BWKQU_iﬂ)_vf@M»)

by taylor s theorem,
VF(xk f V2 £ (x* + t(xK) — x*))(x(K) — x*)dt, so

B (xM) — x*) — VF(xW) = / (V208 = P2F (4 () = x)) (0 — <),

0

1
BRI () —x*) = V)| < / V2 (x®) = V2 £ (x* + (B =) [[IxH) = x*lg
0

1
/ Lel|x®) — x*2de
0

29—

IN

IN

11/33

Newton’s method converges quadratically (1)

now choose r € R small enough that for ||x(¥) — x*|| < r,

(V2 F (xRN < 2||(VF(x*)) 7| (possible since V2f(x*) = 0)
then complete the proof:

”X(k+1) -

\ L) .
< IR - x|
< LICTPFG)) —)2

-~

constant

12/33

Outline

Quasi-Newton methods

13/33

Quasi-Newton methods

what's the problem with Newton's method? V?2f(x) is

» expensive to compute
» expensive to invert

» not always positive definite

14/33

Quasi-Newton methods

what's the problem with Newton's method? V?2f(x) is

» expensive to compute
» expensive to invert

» not always positive definite
quasi-Newton method: use a matrix B, ~ V2(x(¥)) (or
Hi = B, ') that is

» easy to update

» easy to invert

update By at each iteration to improve/maintain approximation

14/33

Quasi-Newton methods

what's the problem with Newton's method? V?2f(x) is

» expensive to compute
» expensive to invert

» not always positive definite

quasi-Newton method: use a matrix B, ~ V2(x(¥)) (or
Hi = B, ') that is

» easy to update

» easy to invert

update By at each iteration to improve/maintain approximation

can still get superlinear convergence!

14/33

BFGS

BFGS is the most popular quasi-Newton method. idea:
> take step with length ax > 0 chosen by line search
(k1) — (k) ak(_Bl:lVf(X(k))) = x(k) ¢ (k)
» new model will be
mia(x) = FED) £ VD) Tt 2 pTBiap

where p = x — x(k+1)

want gradient of my1 to match f at x(K) and x(k+1).

» match at x(k+1)

» match at x(%) if

by construction

VAxK) = Vi (0 — xTD) = v (x(kF)y
VKDY —vixK)) = Bipq(x(k+Y) —x(k>)
y(k) = Bk+15(k)l>(secant equation)
where y(0) = VF(x(k+1)) = v (x(0), s(k) = x(k+1) _ (k).

15/33

Secant equation

0) RO

y = Byt

where y(K) = V£ (x(kt1)) — Vf(x(F), s(k) = x(k+1) _ 5 (k).

> need s(K Ty (k) > 0 (otherwise By is not positive definite)
> (*)if f is strongly convex, then s(K)Ty(K) > 0 for all k
(pf on next slide)

> for nonconvex f, can enforce st T y(K) > 0 by using a line
search that satisfies Wolfe conditions:

F(x5) + apty — F(xK)) > ag VAT pk)
where p(k) = —B, 1V f(x(K) is search direction and

c1,¢ € (0,1) are constants.

16/33

Proof of (*)

Lemma (*)

if f is strongly convex, then y(NTs(k) > 0 for all k

17/33

Proof of (*)

Lemma (*)

if f is strongly convex, then y(NTs(k) > 0 for all k

proof: for f p-strongly convex, for any v, w € R",

Ky o2
v —wl

F(v)+ V)T (w =)+ Zlw — v

(VF(v) = VW) (v = w) + pllv — wl?
s >0

-~

—
<

~
vV

f(w)+ VFw) (v —w)+

=~
E
v

(AVANAYS

= (yUN)Tsk)

setting v = x5t w = x(K) and using s(k) = x(k+1) — x(k),
y W = Vi(xtH1)) — v (xK),

17/33

v

BFGS update

Bi41 € S has n(n+ 1)/2 degrees of freedom

secant equation gives n-dimensional linear system for By
= many solutions!

BFGS update chooses rank 2 update

yyOT B sWsT g,

Bit1 = By + y(A)T 5(k) s(T By s(k)

equivalently, can update the inverse Hessian approximation
Hi = B, *:

Heor = (1—pt0s®) 0Ty b, (1 o) (0 TYT | 0) () () T

where p(k) = W (uses Sherman-Morrison-Woodbury)

each iteration uses O(n?) flops

18/33

Sherman Morrison Woodbury formula

Lemma

Sherman-Morrison-Woodbury formula for a matrix
H = A+ UCV (where dimensions match)

Hl=aA71—Atyct+vatu)ytva

can derive from formula for 2x2 (block) matrix inverse
special case: H= A+ uv' for u,v € R™:

Al TA- L

Hl=A1-" —
14+ viA-1y

also called matrix inversion lemma or any subset of names

19/33

BFGS convergence

demo: try on Rosenbrock function
F(x,y) = (1= x)? +100(y — x*)

https://github.com/stanford-cme-307 /demos/blob/main/qn.jl

20/33

https://github.com/stanford-cme-307/demos/blob/main/qn.jl

X2

1.00

0.50

0.25

BFGS in practice

o
/
<1
/
/
/
B @
/7
/
7/
o
7
/7
L 7/
@
7
7
7/
7/
o
7
7
- e
7
o
//
- —@— Newton
_-® ﬁ solution
- start
__—e
(W0 i i i
0.00 0.25 0.50 0.75 1.00
x1

21/33

Error

1.25

1.00

0.75

0.50

0.25

BFGS in practice

Error vs lteration

—— Gradient Descent
— BFGS

— L-BFGS
Newton

2 4 6 8 10

Iteration

22/33

Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method: need to store H or
B

Limited-memory BFGS (L-BFGS): don't store B explicitly!
> instead, store the m (say, m = 30) most recent values of
s = xW) — xU-1) ;= VF(xY) - vF(xU=1)

> evaluate 6x = B, VF(x(¥)) recursively, using

o, st \ | sis]
Bj =|1- 5 B_,;l | — T + T
Vi si Yisi) o Vi si

assuming Byx_p, =1

23/33

Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method: need to store H or
B

Limited-memory BFGS (L-BFGS): don't store B explicitly!
> instead, store the m (say, m = 30) most recent values of
s = xW) — xU-1) ;= VF(xY) - vF(xU=1)

> evaluate 6x = B, VF(x(¥)) recursively, using

o, st \ | sis]
Bj =|1- 5 B_,;l | — T + T
Vi si Yisi) o Vi si

assuming Byx_p, =1

» advantage: for each update, just apply rank 1 + diagonal
matrix to vector!
» cost per update is O(n); cost per iteration is O(mn)
» storage is O(mn)
23/33

L-BFGS: interpretations

» only remember curvature of Hessian on active subspace

Sk = span{sk,...,Sk—m}

> hope: locally, V£(x(K)) will approximately lie in active
subspace

V) =g5+ g5, g€, g° small

> L-BFGS assumes By ~ | on S*, so BigS™ ~g5";
. s . . ,
if g2 is small, it shouldn’t matter much.

24/33

Outline

Preconditioning

25/33

Three perspectives

» precondition the function
» change the quadratic approximation
» change the metric

26/33

Three perspectives

» precondition the function
» change the quadratic approximation
» change the metric

three names:

» preconditioned
» quasi-Newton

» variable metric

26/33

Recap: convergence analysis for gradient descent

minimize f(x)

recall: we say (twice-differentiable) f is p-strongly convex and
L-smooth if
pl < V3f(x) < LI

recall: if f is p-strongly convex and L-smooth, gradient descent
converges linearly

k
k) — pt < 0 -2

where ¢ = (’;—jr})z K= ﬁ > 1 is condition number

— wantk~1

27/33

Recap: convergence analysis for gradient descent

minimize f(x)

recall: we say (twice-differentiable) f is p-strongly convex and
L-smooth if
pl < V3f(x) < LI

recall: if f is p-strongly convex and L-smooth, gradient descent
converges linearly

k
k) — pt < 0 -2

where ¢ = (%)2 K= ﬁ > 1 is condition number

— wantk~1

idea: can we minimize another function with K =~ 1 whose
solution will tell us the minimizer of f7

27/33

Preconditioning

for D = 0, the two problems
minimize f(x) and minimize f(Dz)
have solutions related by x* = Dz*

» gradient of f(Dz) is DT Vf(Dz)
> the second derivative (Hessian) of f(Dz) is DT V2f(Dz)D

a gradient step on f(Dz) with step-size t > 0 is
zF = z—tD"Vf(Dz)

Dzt = Dz - tDDTVf(Dz)
xt = x—tDDTVf(x)

from prev analysis, gd on z converges fastest if
D™V2f(Dz)D =~ |
D ~ (V*f(Dz)) */?

28/33

Approximate inverse Hessian

B = DDT is called the approximate inverse Hessian

can fix B or update it at every iteration:

» if B is constant: called preconditioned method
(e.g., preconditioned conjugate gradient)

» if B is updated: called (quasi)-Newton method
how to choose B? want

> B~ V%f(x)!

» easy to compute (and update) B

» fast to multiply by B

29/33

Outline

Variable metric methods

30/33

Variable metric
definition of the gradient:

x4 h) = F(x) + (VF(x),5) + 5(5, V27 (3)s) + ofs?)

wrt Euclidean inner product (u,v) = u”v

now define new inner product (u, v)s = u' Av for some matrix
n

AeSh,.

compute the gradient and Hessian wrt this inner product:

f(x+h) = f(x)+(VFf(x),s)+ %(s, V2f(x)s) + o(s®)

=)+ (ATVAx), s)a + 5 (s ATVR()s)a + ofs)

so the gradient and Hessian wrt the new inner product is
1
Vaf(x) = A7IVF(x), Vaf(x) = 5 [A7IV2f(x) + V2 f(x)A]

source: Nesterov Introductory Lectures on Convex Optimization, p. 40
31/33

Outline

Trust region methods

32/33

Trust region methods

suppose By is indefinite. solution to model problem is
unbounded!

argmin my (x) = argmin f(x) + V£(x))T's + %STB;(S

X

trust region method limits step size by choosing x(A*1) to solve
trust region subproblem

minimize myg(x)
subject to ||x — x(K)|| < 6

» nonconvex quadratic problem

» can solve with generalized eigenvalue solver

source: https://www.math.uwaterloo.ca/ hwolkowi/henry/reports/pre-
views.d/trsalgorithm10.pdf

33/33

	Quadratic approximation
	Newton's method
	Quasi-Newton methods
	Preconditioning
	Variable metric methods
	Trust region methods

