CME 307/MSE 311: Optimization

Acceleration, Stochastic Gradient Descent, and
Variance Reduction

Professor Udell

Management Science and Engineering
Stanford

April 26, 2023

1/48

Convergence of gradient descent

unconstrained minimization: find x € IR" to solve
minimize f(x) (1)
where f : IR” — IR is convex and differentiable

we analyzed gradient descent (GD) on this problem:

> a point x is e-suboptimal if f(x) — f* <e
» when f is L-smooth and u-PL (or u-strongly convex), we
showed GD converges to sub-optimality € in at most

1
T=0 (/{ log ()> iterations,
€

where k = ﬁ is the condition number

2/48

Acceleration: motivation

Definition
a first-order method uses only a first-order oracle for f : R” — IR
(i.e., gradient and function evaluation) to minimize f(x)

GD x <= x — aVf(x) is a first-order method

3/48

Acceleration: motivation

Definition
a first-order method uses only a first-order oracle for f : R” — IR
(i.e., gradient and function evaluation) to minimize f(x)

GD x <= x — aVf(x) is a first-order method

Q: is GD the best first-order method for L-smooth, u-strongly
convex functions?

3/48

Acceleration: motivation

Definition
a first-order method uses only a first-order oracle for f : R” — IR
(i.e., gradient and function evaluation) to minimize f(x)

GD x <= x — aVf(x) is a first-order method

Q: is GD the best first-order method for L-smooth, u-strongly
convex functions?
A: no! Nemirovski and Yudin showed a lower-bound of

Topt = lo iterations
=)

to find an e-suboptimal point of any L-smooth, p-strongly
convex function
notice: same rate as CG if f is quadratic

3/48

A worst-case quadratic function

the lower bound can be obtained by constructing a particularly
hard problem instance using quadratic functions

4/48

A worst-case quadratic function

the lower bound can be obtained by constructing a particularly
hard problem instance using quadratic functions

> easier to work in the infinite dimensional-space /2(IR),
which consists of vectors x of infinite length, satisfying

o
I[P =) x? < o0
j=1

4/48

A worst-case quadratic function

the lower bound can be obtained by constructing a particularly
hard problem instance using quadratic functions

> easier to work in the infinite dimensional-space /2(IR),
which consists of vectors x of infinite length, satisfying

o
I[P =) x? < o0
j=1

» the evil quadratic function is then given by
pler=1) [5 < 2 Hisl2
== [+ 05 —x41)* = 2a | + 5 lxI2
j=1
where 1t > 0 and kr > 1

» above example actually gives a family of hard quadratic
functions parametrized by u, k¢

source: Section 2.1, Nesterov, 2018

4/48

The lower bound

Using the family of quadratics on the preceding slide, the
following theorem may be shown
Theorem (Nesterov Theorem 2.1.13)

Let u >0, kr > 1. Suppose M is a first-order method such
that for any input function f, M generates a sequence satisfying

Xk € xp + span{Vf(x),...,VFf(xk)}, Vk

Then there exists a L-smooth, u-strongly convex function with
L/p = k¢ such that the sequence output by M applied to f
satisfies

2k
ke —1
b=l > (Y1) o=l

N2k
f(s0) = () = 5 (VL) o=l

5/48

Accelerated Gradient Descent

Nesterov's accelerated gradient method (AGD)

» a first-order method
» that matches the lower bound

so, converges faster than GD (esp. on ill-conditioned functions)

(one variant of) Nesterov's AGD:

1. Choose xp, yp € R”
2. for k=0,1,..., T,

k41 = Yk —aViF(yk)

Y41 = X1+ B (Xk41 — Xk)

3. Return xx41

[ay

+

B

achieves lower bound when a = % B =

B

source: Section 2.2, Nesterov, 2018

6/48

GD vs. AGD: numerical example

goal is to solve the logistic regression problem
1 1
inimize — lo (1 e (—b,-a-T)) — 2
minimize z; g(1+exp ix))+ meH
1=

with variable x on rcvl dataset, with data matrix
A € [R20:242x47,236 4n(|abels b € IR20:242

» GD and AGD both use theoretically-chosen stepsizes:
» GD is run with stepsize % which for this example equals 4

. . —1
» AGD is run with a = % and 8 = ‘\/fgﬂ

» here strong convexity u = % from the regularizer

7/48

10°

1071 5
1072
10—3 4
1074 ;
10—5 4

1076 4

GD vs. AGD results

m—— AGD
0 100 200 300 400 500

Iteration

8/48

AGD summary and closing remarks

AGD is theoretically optimal among first-order methods for
L-smooth and p-strongly convex functions

converges to e-suboptimality in at most

1
O <\/E|og <>> iterations
€

despite its elegance, AGD is rarely used in practice
(quasi-Newton methods work better and are more stable)

however, it forms the basis for more useful accelerated
gradient methods like FISTA and Katyusha

9/48

Outline

Stochastic optimization

10/48

Minimizing a sum

finite sum minimization: solve
m
C 1
minimize — E fi(x)
mi4
=

examples:
> least squares: fi(x) = (a] x — b;)?
> logistic regression: f;(x) = log(1 + exp (—b;a/ x))

» maximum likelihood estimation: f;(x) is -loglik of
observation / given parameter x

» machine learning: f; is misfit of model x on example i

11/48

Minimizing a sum
finite sum minimization: solve
1 m
minimize - Z fi(x)
i=1
with variable x € IR”

quandary:

» solving a problem with more data should be easier

» but complexity of algorithms increases with m!

goal: find algorithms that work better given more data
(or at least, not worse)

12/48

Minimizing a sum
finite sum minimization: solve
1 m
minimize - Z fi(x)
i=1
with variable x € IR”

quandary:

» solving a problem with more data should be easier

» but complexity of algorithms increases with m!

goal: find algorithms that work better given more data
(or at least, not worse)
idea:

12/48

Minimizing a sum
finite sum minimization: solve
1 m
minimize - Z fi(x)
i=1
with variable x € IR”

quandary:

» solving a problem with more data should be easier

» but complexity of algorithms increases with m!

goal: find algorithms that work better given more data
(or at least, not worse)
idea: throw away data! (cleverly)

12/48

Minimizing an expectation
Stochastic optimization: solve
minimize Ef(x) = E, f(x; w)

with variable x € R"

» random loss function f

» or equivalently, function f(-;w) of random variable w

13/48

Minimizing an expectation
Stochastic optimization: solve

minimize Ef(x) = E, f(x; w)
with variable x € R"”

» random loss function f
» or equivalently, function f(-;w) of random variable w
examples: data w = (a, b) is random
> least squares: f(x;w) = (a’ x — b)?
> logistic regression: f(x;w) = log(1+ exp (—ba'x))
» maximum likelihood estimation: f(x;w) is -loglik of
observation w given parameter x

» machine learning: f(x;w) is misfit of model x on example w

minimize test loss, not just training loss

13/48

Stochastic optimization: what distribution?

stochastic optimization problem

minimize Ey~pq [f(w, x)]
variable x € IR"

(2)

with f(w,x) : 2 x R" convex, Q C IR", w a random variable
distributed according to probability measure ug

objective is expected cost under the randomness due to w:

Eoppg [F (w0,)] = /Q F(w; X)dpun(w)

14 /48

Stochastic optimization: examples

1. n=1,Q=R, and f(w,x) = (x — w)?.

minimize Bupg [(x — w)z]

15/48

Stochastic optimization: examples

1. n=1,Q=R, and f(w,x) = (x — w)?.
minimize Bupg [(x — w)z]

then x, =

15/48

Stochastic optimization: examples

1. n=1,Q=R, and f(w,x) = (x — w)?.
minimize Bupg [(x — w)z]

then x, = Epug[w] and f, = Var, . [w].

15/48

Stochastic optimization: examples
1. n=1,Q=R, and f(w,x) = (x — w)?.

minimize Bupg [(x — w)z]

then x, = Epug[w] and f, = Var, . [w].
2. n=1,0=R, and f(w,x) = |x —w|.

minimize Eypp [[X — wl]

15/48

Stochastic optimization: examples

1. n=1,Q=R, and f(w,x) = (x — w)?.
minimize Bupg [(x — w)z]

then x, = Epug[w] and f, = Var, . [w].
2. n=1,0=R, and f(w,x) = |x —w|.

minimize Eypp [[X — wl]

then x, =

15/48

Stochastic optimization: examples

1. n=1,Q=R, and f(w,x) = (x — w)?.
minimize Bupg [(x — w)z]

then x, = Epug[w] and f, = Var, . [w].
2. n=1,0=R, and f(w,x) = |x —w|.

minimize Eypp [[X — wl]

then x, = the median of uR

15/48

Stochastic optimization: examples

1. n=1,Q=R, and f(w,x) = (x — w)?.
minimize Bupg [(x — w)z]

then x, = Epug[w] and f, = Var, . [w].
2. n=1,0=R, and f(w,x) = |x —w|.

minimize Eypp [[X — wl]

then x, = the median of uR
3. Q=R", pgn = % 71 8, we get the finite sum
minimization problem

1
minimize mz;f(w,-,x).
=

15/48

Stochastic gradient oracle

Definition
a stochastic gradient oracle G, when queried at x € IR” produces
g(w; x) € R™ satisfying

Eprpg [8(wix)] = VF(x)

i.e., G produces an unbiased estimate of the true gradient VF(x)

16/48

Stochastic gradient oracle

Definition
a stochastic gradient oracle G, when queried at x € IR” produces
g(w; x) € R™ satisfying

Eprpg [8(wix)] = VF(x)

i.e., G produces an unbiased estimate of the true gradient VF(x)

16/48

Stochastic gradient oracle

Definition
a stochastic gradient oracle G, when queried at x € IR” produces
g(w; x) € R™ satisfying

Eprpg [8(wix)] = VF(x)

i.e., G produces an unbiased estimate of the true gradient VF(x)

Q: examples of stochastic gradient oracle?

16/48

Stochastic gradient oracle

Definition
a stochastic gradient oracle G, when queried at x € IR” produces
g(w; x) € R™ satisfying

Eprpg [8(wix)] = VF(x)

i.e., G produces an unbiased estimate of the true gradient VF(x)

Q: examples of stochastic gradient oracle?
A: minibatch gradient

|51| Z Vii(w, x)

weS

notation: use Vf(x) to denote stochastic gradient at x

16/48

Stochastic gradient descent (SGD)

SGD:

1. Choose x5 € R"
2. for k=0,1,...

i. query G at xi to obtain g(wk, x«)
ii. compute update:

Xk+1 = Xk — ng(wk,xk)

» SGD is not a descent method!

» SGD exactly the same as GD, except that it uses a
stochastic gradient g(wk, xx) rather than the true gradient

» selection of stepsize 7 is challenging!

17/48

A typical convergence result

Theorem (General SGD convergence)

Consider (2) with smooth and strongly convex f and stochastic
gradient oracle satisfying

Eollg(w, x| < My + MoV F(w, x)|1%.
1. for an appropriate fixed stepsize nx = O(1),

kILrT;OE[f(wk,xk)] —f,=0()

2. for decreasing stepsizes nx, = O(1/k),

E[f (wi: xi)] = i = O(1/k)

18/48

SGD convergence: discussion

» with fixed stepsize, the algorithm converges to e-sublevel set

» convergence of SGD requires a decreasing stepsize —>
slow!

contrast to GD, which converges to the exact optimum even
with fixed stepsize

analysis is tight: there is a matching lower bound.

Agarwal et al., 2012 shows that for strongly convex problems,
any algorithm using a stochastic gradient oracle must make at
least €2(1/€) queries to obtain an e-suboptimal point

19/48

SGD convergence: discussion

» with fixed stepsize, the algorithm converges to e-sublevel set

» convergence of SGD requires a decreasing stepsize —>
slow!

contrast to GD, which converges to the exact optimum even
with fixed stepsize

analysis is tight: there is a matching lower bound.

Agarwal et al., 2012 shows that for strongly convex problems,
any algorithm using a stochastic gradient oracle must make at
least €2(1/€) queries to obtain an e-suboptimal point

don’t despair: add more assumptions!

19/48

Outline

Finite sum minimization

20/48

Finite-sum minimization

return to finite sum problem:
1 m
minimize m;f;(x), (3)
1=

where each f; is L;-smooth and convex

why use SGD for finite sum minimization?

» evaluating minibatch gradient is cheaper per iteration

» converges faster than GD b/c each iteration is faster

21/48

Convergence of SGD

prove SGD minimizes finite sum (3):

22/48

Convergence of SGD

prove SGD minimizes finite sum (3):
k1 = xell? = xe = X = 0V F () |12

= [= xll® = 20 (xk = e, V(i) + 02V F () .

22/48

Convergence of SGD

prove SGD minimizes finite sum (3):
s = %l = lxe = % — 19 F(x0)]12

= [lxk = 1> = 200 = X, VFOxi)) + 07V F 0[P
take expectation wrt V(x):

Exllxkr1 — xl|? =[x — xe |2 — 200 — X VF(x)) + 1B |V (xe) |2
< (1= np)llx — xell® = 20 (F(xk) — F(xi))
+ Bk VF (xi) |12

using strong convexity:

F(x) = F(x) + V() T(x =) + 5 e = el

22/48

One-step lemma

we have shown the following progress bound for one step of SGD

Lemma
at iteration k of SGD,

Ex|xe+1 — x|

< (L= m)llxe = %I = 20 (FO) = F(x0)) + P Exl[VF ()

to show convergence, we must bound B ||V £ (xc)|2

23/48

One-step lemma

we have shown the following progress bound for one step of SGD

Lemma
at iteration k of SGD,

Ex[lxXk1 — x|
< (L= m)llxe = %I = 20 (FO) = F(x0)) + P Exl[VF ()

to show convergence, we must bound B ||V £ (xc)|2

we will follow the approach of Gower et al., 2019

23/48

Expected smoothness

Definition (Expected smoothness)
f satisfies L-expected smoothness (L-ES) if 3L > 0 such that

E|[VF(x) = V(x| < 2L(F(x) = f(x.))

reduces to L-smoothness if we replace v by V:

Fx) — Fl) > o [VF() — TF(x) P

24/48

Expected smoothness

Definition (Expected smoothness)
f satisfies L-expected smoothness (L-ES) if 3L > 0 such that

E|[VF(x) = V(x| < 2L(F(x) = f(x.))

reduces to L-smoothness if we replace v by V:

Fx) — Fl) > o [VF() — TF(x) P

Corollary
define 02 := E||Vf(x,)||2. then

E|VF(x)|]? < 4L(F(x) — F(x.)) + 202, Vx

24/48

Expected smoothness

Definition (Expected smoothness)
f satisfies L-expected smoothness (L-ES) if 3L > 0 such that

E|[VF(x) = V(x| < 2L(F(x) = f(x.))

reduces to L-smoothness if we replace v by V:

1
f(x) —f(x) > ZHVf(X) — VF(x)|?
Corollary
define 02 := E||Vf(x,)||2. then
E||VF(x)||? < 4L(f(x) — f(x.)) + 202, Vx

under ES, gradient variance is controlled by suboptimality and

variance of the gradient at the optimum 2448

L-ES condition for smooth convex functions

Theorem (special case of Gower et al., 2019)

Suppose each f; is Li-smooth and convex. Consider mini-batch
stochastic gradients Vf = \?ll > ics fi(x) with batch-size
bg = |S|. Then

E|VF(x)|? < 4L(F(x) = f(x.)) + 207,
with

L= b _1 l max L;
m g(m - 1) 1<i<m

and

o m-—bg l " - 2
7= ety 2 VA

sanity check: 02 — 0 as bg — n

25/48

Back to SGD convergence

using the one-step lemma with p-strong convexity and L-ES, we
find

Epllxicrr = xll < (1= np)lxic = xell? +2n(2nL — 1) (F () — £(x.))
+ %202

. . 1
so, choosing stepsize n <

Exllxee1 = xel? < (1 = n) Ik — x||* + 207

26/48

SGD convergence contd

apply induction + take total expectation to get

k
Ellxir1 — x> < (1= nu)Hxo = il + | D (1 —nu) | n°20
=0
k+1 5 | 1207
< (X =nu) T Ixo — xlI” + .

by summing the geometric series. choose 7 < 5, so

€
2

we can solve for k to find how many iterations are needed to

Eltr —xl|? < (1= nu)**Hxo — xl|* +

reach error g:

2(f(x0) — f(X*)))

k > ()" log < -

27 /48

SGD convergence with fixed stepsize

we have shown

Theorem

Suppose f : IR" — R is pu-strongly convex, with an L-ES
stochastic gradient oracle. Run SGD with batchsize b, and fixed
stepsize 1) = min {5, 7% }. Then for

k> (nu)~!log (M) iterations,

€

Ellx — x:|l? < e

» same convergence rate as we'd get with decreasing stepsize
sequence 1 = O(1/k)

» but motivates variance reduction, which will give linear
convergence!

28/48

Results

: Optimization error

] =— GD

— AGD

] = SGD

0 100

200 300 400 500
Epoch

29/48

Results: Test error

6x1071 GD
= AGD
4x10°t
3x107!
2x1071!
\/
0 100 200 300 400 500

Epoch

30/48

The gradient is too noisy!

the expected smoothness condition shows the gradient is noisy,
E[VF(x)]|? < 4L(f(x) — f(x.)) + 202,

even at x,

» good news: f(x)—f*— 0 as x — x,

» bad news: o2 > 0 even near x,

can we design an algorithm that eliminates this noise as x — x,?

31/48

Stochastic Variance Reduced Gradient

Stochastic Variance Reduced Gradient (SVRG) uses a different
stochastic gradient

g(x) = VF(x) = VF(xs) + VF(xs)

where

> V still denotes the minibatch gradient
» x; € IR" is a reference point

> Vf(xs) — VF(xs) is a control variate introduced to reduce
variance

g(x) € IR" is a stochastic gradient at x € R":

Elg(x)] = Vf(x) = V(xs) + VI(xs) = VF(x),

32/48

Some useful identities

recall the following two identities for random variables X, Y:

1. E|IX + Y|? < 2E|X|? 4 2E| Y|?
2. E[IX - E[X]|* < E[X|?

33/48

Some useful identities

recall the following two identities for random variables X, Y:

1. E|IX + Y|? < 2E|X|? 4 2E| Y|?
2. E[IX - E[X]|* < E[X|?

(exercise: prove these!)

33/48

SVRG reduces variance

variance of g(x) depends on suboptimality of x and xs

Ellg(x)I

IN

Ellg(x) — VF(x.) + VF(x.)?

E||[VF(x) = VF(x) + VF(x) = VF(x) + VF(x)||
2EHV£(X) — Vfﬁx*)Hz

+2E||VF(xs) — VF(x) — VF(xs)|?

WVF(x) - V)P)
+2EﬂVf(xs) - VF(x) — IE[VAf(xs) — Vf(x*)]Hz
2R||VF(x) — VF(x)|? + 2E|VF(xs) — VF(x)|?
A4L[F(x) — F(xx) + f(xs) — F(x)]

hence Var(g(x)) — 0 as f(x) — £, f(xs) = fi

34/48

How to select x,?

to ensure x, xs — x, (and so Var(g(x)) — 0)

» update xs; as we make progress (so f(xs) — f(xx))

» don't update too often, as computing V£ (xs) is expensive

35/48

SVRG algorithm

1. initialize at xg and set xs = xp
2. fors=0,...,5

2.1 compute and store V£ (xs)
22 for k=0,....m—1

Xlgi)l = x,Es) =/ (%f(x,ﬁs)) - ﬁf(xs) + Vf(xs))

2.3 select xs11 by uniformly sampling at random from

{X(gs)7 . ,X,(,il}
2.4 set xéSH) = Xst1

3. return xg
> notice that Efg 1y = 1 >°7, f(x,-(s) (needed for proof)

» in practice, fine to set fo11 = f(x,(ns) (last iterate)

36/48

SVRG convergence

Theorem

Run SVRG with S = O (log (%)) outer iterations, m = O()
inner iterations, and fixed stepsize n = O(1/L). Then

E[f (xs)] — f(x.) < .

The number of gradient oracle calls is bounded by

0 <(n + rby)log (1)) .

37/48

SVRG convergence

Theorem
Run SVRG with S = O (log (%)) outer iterations, m = O()
inner iterations, and fixed stepsize n = O(1/L). Then

E[f (xs)] — f(x.) < .

The number of gradient oracle calls is bounded by

0 <(n + rby)log (1)) .

» unlike SGD, SVRG converges linearly to the optimum

» when x = O(n), SVRG makes only O(nb,) oracle calls,
while GD makes O(n?) calls. so SVRG reduces the number
of calls by n/by!

37/48

Proof of SVRG convergence

the argument may be broken down into two lemmas. We begin
with the following one-step progress bound for outer-iteration s

Lemma (One-step lemma)

Suppose we are at iteration k of outer-iteration s. Then

Exllx, = x| < I3 = xl? + 20 (2nL — 1) [F() = ()]
+ 4P LIF (%) — ()]

38/48

Proof of One-step lemma

eIy — %2 =
%6 = |2 = 200V F (), xc = %) + 0 El| gxi)2
< [= xl1? = 20 (F(xi) — F(x.)) + 1Bl g0xe) |12
< [— xell? = 20 (F(x) — F(x.)) +
BPLIF(x) = Fx) + F(x) — F(x).]
where the first inequality uses convexity
FOxi) = Flx) < (VF(x0), x0 — %)
so, after rearranging
Erlxiy — xl? < llx = %12 + 27 (2nL — 1) [F(x7)) = £(x.)]
+ 4n2LIf (xs) — F(x.)]

39/48

Outer iteration contraction

the next step is show to the follow contraction result for the
outer-iterations.

Lemma (Outer iteration contraction)

Suppose we are in outer iteration s. Then

1 2
o = 2qm 1= agr | (Fxs-1) =)

where Eg.s_1 denotes the expectation conditioned on
outer-iterations O through s — 1.

IE:O:s—l [f(Xs)]_f(X*) <

40/48

Proof of outer iteration contraction

summing the inequality in the one-step lemma from
k=0,...,m—1,

m—1
ZEknka x2S xS — xllP+

k=0

m—1

1
2nm(2nL —1) =Y [f) — F(x)] + 4mnP[f (xs—1) — F(x)].
nm (2n ’”g— (Xk ()] + 4mn~[f(xs—1) — f(x)]

41/48

Proof of outer iteration contraction

summing the inequality in the one-step lemma from
k=0,...,m—1,

m—1

ZEknka xlP < 3 Ik =P+
1 m—1 -
20m (2L = 1) — S[F(x7) = FO)] 4+ 4mn[F(xs-1) = ()]
k=0

taking the expectation over all inner-iterations conditioned on
outer-iterations 0 through s — 1 4 cancellation, yields

Eo:s—1 |13 — |2 < [|xs—1 — x| 2+
+2nm (2nL — 1) (Eo.s—1 [F(xs)] — F(x)) + 4m772L[f(xs_1) — f(x)]-

41/48

Proof contd.

rearranging gives
Eos-1l% — x[* +2nm (1 — 2nL) (Eo:s—1 [f(x5)] = f(x.))
<2 (i 4 2m772L> [F(xs-1) — F(x)]
where we used strong convexity of f
s =l < 2 (Flxeos) = ()
hence (dropping Eo.s_1[|xs — x||?> > 0)
2nm (1 = 2nL) (Eo.s—1 [f(xs)] — f(x4))

<2 G + 2mn2L> [f(xs-1) — F(x)],

and so the claim follows by rearrangement
42/48

Finishing the proof

1 2
o —2anD)m T 1=ogr| Fx) = 1)

Eo:s—1[f (xs+1)]—f (%) <
setting n = WIL and m = 20%, we find

Bos lF ()]~ F() < 5 (F(5s-1) — F(x.)

now taking expectations over all outer iterations and recursing,
1 S
BIFG)] — 7)< (3) (7o)~ 7).

which gives the theorem after setting s = O (log(1/¢))

43 /48

Practical questions for SVRG

44 /48

Practical questions for SVRG

Q: how to select update frequency m?

44/48

Practical questions for SVRG

Q: how to select update frequency m?
A: not obvious, as the dependence upon L/ is loose. In
practice, use m n/b, update every 1-2 epochs

44/48

Practical questions for SVRG

Q: how to select update frequency m?

A: not obvious, as the dependence upon L/ is loose. In
practice, use m n/b, update every 1-2 epochs

Q: how to choose step-size 1?

44/48

Practical questions for SVRG

Q: how to select update frequency m?

A: not obvious, as the dependence upon L/ is loose. In
practice, use m n/b, update every 1-2 epochs

Q: how to choose step-size 1?

A: monitor convergence. theoretical step-size often too small

44/48

Practical questions for SVRG

Q: how to select update frequency m?

A: not obvious, as the dependence upon L/ is loose. In
practice, use m n/b, update every 1-2 epochs

Q: how to choose step-size 1?

A: monitor convergence. theoretical step-size often too small

Q: does SVRG work for non-convex problems like deep learning?

44/48

Practical questions for SVRG

Q: how to select update frequency m?

A: not obvious, as the dependence upon L/ is loose. In
practice, use m n/b, update every 1-2 epochs

Q: how to choose step-size 1?

A: monitor convergence. theoretical step-size often too small

Q: does SVRG work for non-convex problems like deep learning?
A: alas, no: variance reduction may worsen performance for
nonconvex problems!

44/48

SVRG numerical performance

» revisit the same logistic regression example
» run SVRG with step-size n = 4
» update snapshot every epoch

45/48

Results: Optimization error

o- | | | |

100 200 300 400 500
Epoch

46 /48

6x107!

4x107!

3x107!

2x107!

Results: Test loss

0 100 200 300 400 500

47 /48

SVRG: Final comments

» variance reduction is a powerful tool for convex finite-sum
optimization, as it delivers linear convergence

» SVRG has motivated the development of better (usually)
variance reduced algorithms such as SAGA and Katyusha

» outside of finite-sum convex optimization, variance
reduction hasn't proven to be terribly useful

48 /48

	Stochastic optimization
	Finite sum minimization

