CME 307/MSE 311: Optimization

Acceleration, Stochastic Gradient Descent, and Variance Reduction

Professor Udell

Management Science and Engineering Stanford

April 26, 2023

Convergence of gradient descent

unconstrained minimization: find $x \in \mathbb{R}^n$ to solve

minimize
$$f(x)$$
 (1)

where $f: \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable

we analyzed gradient descent (GD) on this problem:

- ▶ a point x is ϵ -suboptimal if $f(x) f^* \le \epsilon$
- when f is L-smooth and μ -PL (or μ -strongly convex), we showed GD converges to sub-optimality ϵ in at most

$$T = \mathcal{O}\left(\kappa \log\left(\frac{1}{\epsilon}\right)\right)$$
 iterations,

where $\kappa \coloneqq \frac{L}{\mu}$ is the condition number

Acceleration: motivation

Definition

a first-order method uses only a first-order oracle for $f: \mathbb{R}^n \to \mathbb{R}$ (i.e., gradient and function evaluation) to minimize f(x)

GD $x \leftarrow x - \alpha \nabla f(x)$ is a first-order method

Acceleration: motivation

Definition

a first-order method uses only a first-order oracle for $f: \mathbb{R}^n \to \mathbb{R}$ (i.e., gradient and function evaluation) to minimize f(x)

GD $x \leftarrow x - \alpha \nabla f(x)$ is a first-order method

Q: is GD the best first-order method for *L*-smooth, μ -strongly convex functions?

Acceleration: motivation

Definition

a first-order method uses only a first-order oracle for $f: \mathbb{R}^n \to \mathbb{R}$ (i.e., gradient and function evaluation) to minimize f(x)

GD $x \leftarrow x - \alpha \nabla f(x)$ is a first-order method

Q: is GD the best first-order method for *L*-smooth, μ -strongly convex functions?

A: no! Nemirovski and Yudin showed a lower-bound of

$$\mathcal{T}_{\mathrm{opt}} = \Omega\left(\sqrt{\kappa}\log\left(rac{1}{\epsilon}
ight)
ight)$$
 iterations

to find an ϵ -suboptimal point of any L-smooth, μ -strongly convex function

notice: same rate as CG if f is quadratic

A worst-case quadratic function

the lower bound can be obtained by constructing a particularly hard problem instance using quadratic functions

A worst-case quadratic function

the lower bound can be obtained by constructing a particularly hard problem instance using quadratic functions

ightharpoonup easier to work in the infinite dimensional-space $\ell^2(\mathbb{R})$, which consists of vectors x of infinite length, satisfying

$$||x||^2 = \sum_{j=1}^{\infty} x_j^2 < \infty$$

A worst-case quadratic function

the lower bound can be obtained by constructing a particularly hard problem instance using quadratic functions

ightharpoonup easier to work in the infinite dimensional-space $\ell^2(\mathbb{R})$, which consists of vectors x of infinite length, satisfying

$$||x||^2 = \sum_{j=1}^{\infty} x_j^2 < \infty$$

the evil quadratic function is then given by

$$f(x) = \frac{\mu(\kappa_f - 1)}{8} \left(x_1^2 + \sum_{j=1}^{\infty} (x_j - x_{j+1})^2 - 2x_1 \right) + \frac{\mu}{2} ||x||^2,$$

where $\mu > 0$ and $\kappa_f > 1$

lacktriangle above example actually gives a family of hard quadratic functions parametrized by μ, κ_f

source: Section 2.1, Nesterov, 2018

The lower bound

Using the family of quadratics on the preceding slide, the following theorem may be shown

Theorem (Nesterov Theorem 2.1.13)

Let $\mu > 0$, $\kappa_f > 1$. Suppose \mathcal{M} is a first-order method such that for any input function f, \mathcal{M} generates a sequence satisfying

$$x_k \in x_0 + \operatorname{span}\{\nabla f(x_0), \dots, \nabla f(x_k)\}, \quad \forall k$$

Then there exists a L-smooth, μ -strongly convex function with $L/\mu = \kappa_f$ such that the sequence output by $\mathcal M$ applied to f satisfies

$$||x_k - x_\star||^2 \ge \left(\frac{\sqrt{\kappa_f} - 1}{\sqrt{\kappa_f} + 1}\right)^{2k} ||x_0 - x_\star||^2,$$

$$f(x_k) - f(x_{\star}) \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa_f} - 1}{\sqrt{\kappa_f} + 1} \right)^{2k} \|x_0 - x_{\star}\|^2$$

Accelerated Gradient Descent

Nesterov's accelerated gradient method (AGD)

- a first-order method
- that matches the lower bound

so, converges faster than GD (esp. on ill-conditioned functions) (one variant of) Nesterov's AGD:

- 1. Choose $x_0, y_0 \in \mathbb{R}^n$
- 2. for k = 0, 1, ..., T,

$$x_{k+1} = y_k - \alpha \nabla f(y_k)$$

$$y_{k+1} = x_{k+1} + \beta (x_{k+1} - x_k)$$

3. Return x_{k+1}

achieves lower bound when $\alpha=\frac{1}{L}$, $\beta=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$

source: Section 2.2, Nesterov, 2018

GD vs. AGD: numerical example

goal is to solve the logistic regression problem

minimize
$$\frac{1}{m} \sum_{i=1}^{m} \log \left(1 + \exp \left(-b_i a_i^T x \right) \right) + \frac{1}{m} ||x||^2$$

with variable x on rcv1 dataset, with data matrix $A \in \mathbb{R}^{20,242 \times 47,236}$ and labels $b \in \mathbb{R}^{20,242}$

- ▶ GD and AGD both use theoretically-chosen stepsizes:
 - ▶ GD is run with stepsize $\frac{1}{I}$, which for this example equals 4
 - ▶ AGD is run with $\alpha = \frac{1}{L}$ and $\beta = \frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$
- ▶ here strong convexity $\mu = \frac{1}{m}$ from the regularizer

GD vs. AGD results

AGD summary and closing remarks

- AGD is theoretically optimal among first-order methods for L-smooth and μ -strongly convex functions
- ightharpoonup converges to ϵ -suboptimality in at most

$$\mathcal{O}\left(\sqrt{\kappa}\log\left(\frac{1}{\epsilon}\right)\right)$$
 iterations

- despite its elegance, AGD is rarely used in practice (quasi-Newton methods work better and are more stable)
- however, it forms the basis for more useful accelerated gradient methods like FISTA and Katyusha

Outline

Stochastic optimization

Finite sum minimization

finite sum minimization: solve

minimize
$$\frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

examples:

- least squares: $f_i(x) = (a_i^T x b_i)^2$
- ▶ logistic regression: $f_i(x) = \log(1 + \exp(-b_i a_i^T x))$
- ▶ maximum likelihood estimation: $f_i(x)$ is -loglik of observation i given parameter x
- ightharpoonup machine learning: f_i is misfit of model x on example i

finite sum minimization: solve

minimize
$$\frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

with variable $x \in \mathbb{R}^n$

quandary:

- solving a problem with more data should be easier
- but complexity of algorithms increases with m!

goal: find algorithms that work *better* given *more* data (or at least, not worse)

finite sum minimization: solve

minimize
$$\frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

with variable $x \in \mathbb{R}^n$

quandary:

- solving a problem with more data should be easier
- but complexity of algorithms increases with m!

goal: find algorithms that work *better* given *more* data (or at least, not worse) idea:

finite sum minimization: solve

minimize
$$\frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

with variable $x \in \mathbb{R}^n$

quandary:

- solving a problem with more data should be easier
- but complexity of algorithms increases with m!

goal: find algorithms that work *better* given *more* data (or at least, not worse) idea: throw away data! (cleverly)

Minimizing an expectation

Stochastic optimization: solve

minimize
$$\mathbb{E} f(x) = \mathbb{E}_{\omega} f(x; \omega)$$

with variable $x \in \mathbb{R}^n$

- random loss function f
- \blacktriangleright or equivalently, function $f(\cdot;\omega)$ of random variable ω

Minimizing an expectation

Stochastic optimization: solve

minimize
$$\mathbb{E} f(x) = \mathbb{E}_{\omega} f(x; \omega)$$

with variable $x \in \mathbb{R}^n$

- random loss function f
- lacktriangle or equivalently, function $f(\cdot;\omega)$ of random variable ω

examples: data $\omega = (a, b)$ is random

- least squares: $f(x; \omega) = (a^T x b)^2$
- ▶ logistic regression: $f(x; \omega) = \log(1 + \exp(-ba^T x))$
- ▶ maximum likelihood estimation: $f(x; \omega)$ is -loglik of observation ω given parameter x
- ightharpoonup machine learning: $f(x;\omega)$ is misfit of model x on example ω

minimize test loss, not just training loss

Stochastic optimization: what distribution?

stochastic optimization problem

minimize
$$\mathbb{E}_{\omega \sim \mu_{\Omega}}[f(\omega, x)]$$
 variable $x \in \mathbb{R}^n$ (2)

with $f(\omega, x) : \Omega \times \mathbb{R}^n$ convex, $\Omega \subseteq \mathbb{R}^n$, ω a random variable distributed according to probability measure μ_{Ω}

objective is expected cost under the randomness due to ω :

$$\mathbb{E}_{\omega \sim \mu_{\Omega}}\left[f(\omega, x)\right] = \int_{\Omega} f(\omega; x) d\mu_{\Omega}(\omega)$$

1.
$$n=1, \Omega=\mathbb{R}$$
, and $f(\omega,x)=(x-\omega)^2$. minimize $\mathbb{E}_{\omega\sim\mu_{\mathbb{R}}}\left[(x-\omega)^2\right]$

1.
$$n=1,\Omega={\mathbb R},$$
 and $f(\omega,x)=(x-\omega)^2.$ minimize $\mathbb{E}_{\omega\sim\mu_{\mathbb R}}\left[(x-\omega)^2\right]$ then $x_\star=$

1.
$$n=1, \Omega={\rm I\!R}, \ {\rm and} \ f(\omega,x)=(x-\omega)^2.$$

$${\rm minimize} \quad \mathbb{E}_{\omega\sim\mu_{\rm I\!R}}\left[(x-\omega)^2\right]$$
 then $x_\star=\mathbb{E}_{\omega\sim\mu_{\rm I\!R}}[\omega] \ {\rm and} \ f_\star={\rm Var}_{\omega\sim\mu_{\rm I\!R}}[\omega].$

1.
$$n=1, \Omega=\mathbb{R}$$
, and $f(\omega,x)=(x-\omega)^2$. minimize $\mathbb{E}_{\omega\sim\mu_\mathbb{R}}\left[(x-\omega)^2\right]$

then
$$x_{\star} = \mathbb{E}_{\omega \sim \mu_{\mathbb{R}}}[\omega]$$
 and $f_{\star} = \mathsf{Var}_{\omega \sim \mu_{\mathbb{R}}}[\omega]$.

2.
$$n = 1, \Omega = \mathbb{R}$$
, and $f(\omega, x) = |x - \omega|$.

minimize
$$\mathbb{E}_{\omega \sim \mu_{\mathbb{R}}}\left[|x - \omega|\right]$$

1.
$$n=1, \Omega=\mathbb{R}$$
, and $f(\omega,x)=(x-\omega)^2$. minimize $\mathbb{E}_{\omega\sim\mu_\mathbb{R}}\left[(x-\omega)^2\right]$

then
$$x_{\star} = \mathbb{E}_{\omega \sim \mu_{\mathbb{R}}}[\omega]$$
 and $f_{\star} = \mathsf{Var}_{\omega \sim \mu_{\mathbb{R}}}[\omega]$.

2.
$$n = 1, \Omega = \mathbb{R}$$
, and $f(\omega, x) = |x - \omega|$.

minimize
$$\mathbb{E}_{\omega \sim \mu_{\mathbb{R}}}\left[|x - \omega|\right]$$

then $x_{\star} =$

1.
$$n=1, \Omega=\mathbb{R}$$
, and $f(\omega,x)=(x-\omega)^2$. minimize $\mathbb{E}_{\omega\sim\mu_\mathbb{R}}\left[(x-\omega)^2\right]$

then
$$x_{\star} = \mathbb{E}_{\omega \sim \mu_{\mathbb{R}}}[\omega]$$
 and $f_{\star} = \mathsf{Var}_{\omega \sim \mu_{\mathbb{R}}}[\omega]$.

2.
$$n = 1, \Omega = \mathbb{R}$$
, and $f(\omega, x) = |x - \omega|$.

minimize
$$\mathbb{E}_{\omega \sim \mu_{\mathbb{R}}}\left[|x - \omega|\right]$$

then $x_{\star} =$ the median of $\mu_{\rm IR}$

1.
$$n=1, \Omega=\mathbb{R}$$
, and $f(\omega,x)=(x-\omega)^2$. minimize $\mathbb{E}_{\omega\sim\mu_{\mathbb{R}}}\left[(x-\omega)^2\right]$

then
$$x_{\star} = \mathbb{E}_{\omega \sim \mu_{\mathbb{R}}}[\omega]$$
 and $f_{\star} = \mathsf{Var}_{\omega \sim \mu_{\mathbb{R}}}[\omega]$.

2.
$$n = 1, \Omega = \mathbb{R}$$
, and $f(\omega, x) = |x - \omega|$.

minimize
$$\mathbb{E}_{\omega \sim \mu_{\mathbb{R}}}\left[|x - \omega|\right]$$

then $x_{\star} =$ the median of $\mu_{\mathbb{R}}$

3. $\Omega=\mathbb{R}^n$, $\mu_{\mathbb{R}^n}=\frac{1}{m}\sum_{i=1}^m\delta_{\omega_i}$. we get the finite sum minimization problem

minimize
$$\frac{1}{m}\sum_{i=1}^{m}f(\omega_i,x)$$
.

Definition

a stochastic gradient oracle \mathcal{G} , when queried at $x \in \mathbb{R}^n$ produces $g(\omega; x) \in \mathbb{R}^n$ satisfying

$$\mathbb{E}_{\omega \sim \mu_{\Omega}}\left[g(\omega;x)\right] = \nabla F(x)$$

i.e., \mathcal{G} produces an unbiased estimate of the true gradient $\nabla F(x)$

Definition

a stochastic gradient oracle \mathcal{G} , when queried at $x \in \mathbb{R}^n$ produces $g(\omega; x) \in \mathbb{R}^n$ satisfying

$$\mathbb{E}_{\omega \sim \mu_{\Omega}}\left[g(\omega;x)\right] = \nabla F(x)$$

i.e., \mathcal{G} produces an unbiased estimate of the true gradient $\nabla F(x)$

Definition

a stochastic gradient oracle \mathcal{G} , when queried at $x \in \mathbb{R}^n$ produces $g(\omega; x) \in \mathbb{R}^n$ satisfying

$$\mathbb{E}_{\omega \sim \mu_{\Omega}}\left[g(\omega;x)\right] = \nabla F(x)$$

i.e., \mathcal{G} produces an unbiased estimate of the true gradient $\nabla F(x)$

Q: examples of stochastic gradient oracle?

Definition

a stochastic gradient oracle \mathcal{G} , when queried at $x \in \mathbb{R}^n$ produces $g(\omega; x) \in \mathbb{R}^n$ satisfying

$$\mathbb{E}_{\omega \sim \mu_{\Omega}}\left[g(\omega;x)\right] = \nabla F(x)$$

i.e., \mathcal{G} produces an unbiased estimate of the true gradient $\nabla F(x)$

Q: examples of stochastic gradient oracle?

A: minibatch gradient

$$\frac{1}{|S|} \sum_{\omega \in S} \nabla f_i(\omega, x)$$

notation: use $\hat{\nabla} f(x)$ to denote stochastic gradient at x

Stochastic gradient descent (SGD)

SGD:

- 1. Choose $x_0 \in \mathbb{R}^n$
- 2. for k = 0, 1, ...
 - i. query \mathcal{G} at x_k to obtain $g(\omega_k, x_k)$
 - ii. compute update:

$$x_{k+1} = x_k - \eta_k g(\omega_k, x_k)$$

- SGD is not a descent method!
- ▶ SGD exactly the same as GD, except that it uses a stochastic gradient $g(\omega_k, x_k)$ rather than the true gradient
- \triangleright selection of stepsize η_k is challenging!

A typical convergence result

Theorem (General SGD convergence)

Consider (2) with smooth and strongly convex f and stochastic gradient oracle satisfying

$$\mathbb{E}_{\omega} \| g(\omega, x) \|^2 \leq M_1 + M_2 \| \nabla F(\omega, x) \|^2.$$

1. for an appropriate fixed stepsize $\eta_k = O(1)$,

$$\lim_{k\to\infty}\mathbb{E}[f(\omega_k,x_k)]-f_\star=O(1)$$

2. for decreasing stepsizes $\eta_k = O(1/k)$,

$$\mathbb{E}[f(\omega_k, x_k)] - f_{\star} = O(1/k)$$

SGD convergence: discussion

- \blacktriangleright with fixed stepsize, the algorithm converges to ϵ -sublevel set
- convergence of SGD requires a decreasing stepsize slow!

contrast to GD, which converges to the exact optimum even with fixed stepsize

analysis is tight: there is a matching lower bound. Agarwal et al., 2012 shows that for strongly convex problems, any algorithm using a stochastic gradient oracle must make at least $\Omega(1/\epsilon)$ queries to obtain an ϵ -suboptimal point

SGD convergence: discussion

- \triangleright with fixed stepsize, the algorithm converges to ϵ -sublevel set
- ▶ convergence of SGD requires a decreasing stepsize ⇒ slow!

contrast to GD, which converges to the exact optimum even with fixed stepsize

analysis is tight: there is a matching lower bound. Agarwal et al., 2012 shows that for strongly convex problems, any algorithm using a stochastic gradient oracle must make at least $\Omega(1/\epsilon)$ queries to obtain an ϵ -suboptimal point

don't despair: add more assumptions!

19 / 48

Outline

Stochastic optimization

Finite sum minimization

Finite-sum minimization

return to finite sum problem:

minimize
$$\frac{1}{m} \sum_{i=1}^{m} f_i(x), \tag{3}$$

where each f_i is L_i -smooth and convex

why use SGD for finite sum minimization?

- evaluating minibatch gradient is cheaper per iteration
- converges faster than GD b/c each iteration is faster

Convergence of SGD

prove SGD minimizes finite sum (3):

Convergence of SGD

prove SGD minimizes finite sum (3):

$$||x_{k+1} - x_{\star}||^{2} = ||x_{k} - x_{\star} - \eta \widehat{\nabla} f(x_{k})||^{2}$$

= $||x_{k} - x_{\star}||^{2} - 2\eta \langle x_{k} - x_{\star}, \widehat{\nabla} f(x_{k}) \rangle + \eta^{2} ||\widehat{\nabla} f(x_{k})||^{2}.$

Convergence of SGD

prove SGD minimizes finite sum (3):

$$||x_{k+1} - x_{\star}||^{2} = ||x_{k} - x_{\star} - \eta \widehat{\nabla} f(x_{k})||^{2}$$

= $||x_{k} - x_{\star}||^{2} - 2\eta \langle x_{k} - x_{\star}, \widehat{\nabla} f(x_{k}) \rangle + \eta^{2} ||\widehat{\nabla} f(x_{k})||^{2}.$

take expectation wrt $\hat{\nabla} f(x_k)$:

$$\begin{split} \mathbb{E}_{k} \|x_{k+1} - x_{\star}\|^{2} &= \|x_{k} - x_{\star}\|^{2} - 2\eta \langle x_{k} - x_{\star}, \nabla f(x_{k}) \rangle + \eta^{2} \mathbb{E}_{k} \|\widehat{\nabla} f(x_{k})\|^{2} \\ &\leq (1 - \eta \mu) \|x_{k} - x_{\star}\|^{2} - 2\eta \left(f(x_{k}) - f(x_{\star}) \right) \\ &+ \eta^{2} \mathbb{E}_{k} \|\widehat{\nabla} f(x_{k})\|^{2} \end{split}$$

using strong convexity:

$$f(x_{\star}) \geq f(x_k) + \nabla f(x_k)^T (x_{\star} - x_k) + \frac{\mu}{2} ||x_{\star} - x_k||^2.$$

One-step lemma

we have shown the following progress bound for one step of SGD

Lemma

at iteration k of SGD,

$$\begin{split} & \mathbb{E}_{k} \|x_{k+1} - x_{\star}\|^{2} \\ & \leq (1 - \eta \mu) \|x_{k} - x_{\star}\|^{2} - 2\eta \left(f(x_{k}) - f(x_{\star})\right) + \eta^{2} \mathbb{E}_{k} \|\widehat{\nabla} f(x_{k})\|^{2} \end{split}$$

to show convergence, we must bound $\mathbb{E}_k \|\widehat{\nabla} f(x_k)\|^2$

One-step lemma

we have shown the following progress bound for one step of SGD

Lemma

at iteration k of SGD,

$$\mathbb{E}_{k} \|x_{k+1} - x_{\star}\|^{2}
\leq (1 - \eta \mu) \|x_{k} - x_{\star}\|^{2} - 2\eta \left(f(x_{k}) - f(x_{\star})\right) + \eta^{2} \mathbb{E}_{k} \|\widehat{\nabla} f(x_{k})\|^{2}$$

to show convergence, we must bound $\mathbb{E}_k \|\widehat{\nabla} f(x_k)\|^2$

we will follow the approach of Gower et al., 2019

Expected smoothness

Definition (Expected smoothness)

f satisfies L-expected smoothness (L-ES) if $\exists L > 0$ such that

$$\mathbb{E}\|\widehat{\nabla}f(x)-\widehat{\nabla}f(x_{\star})\|^{2}\leq 2L(f(x)-f(x_{\star}))$$

reduces to *L*-smoothness if we replace $\widehat{\nabla}$ by ∇ :

$$f(x) - f(x_{\star}) \ge \frac{1}{2I} \|\nabla f(x) - \nabla f(x_{\star})\|^2$$

Expected smoothness

Definition (Expected smoothness)

f satisfies L-expected smoothness (L-ES) if $\exists L > 0$ such that

$$\mathbb{E}\|\widehat{\nabla}f(x)-\widehat{\nabla}f(x_{\star})\|^{2}\leq 2L(f(x)-f(x_{\star}))$$

reduces to *L*-smoothness if we replace $\widehat{\nabla}$ by ∇ :

$$f(x) - f(x_*) \ge \frac{1}{2I} \|\nabla f(x) - \nabla f(x_*)\|^2$$

Corollary

define
$$\sigma^2 := \mathbb{E} \|\widehat{\nabla} f(x_\star)\|^2$$
. then

$$\mathbb{E}\|\widehat{\nabla}f(x)\|^2 \le 4L(f(x) - f(x_{\star})) + 2\sigma^2, \qquad \forall x$$

Expected smoothness

Definition (Expected smoothness)

f satisfies L-expected smoothness (L-ES) if $\exists L > 0$ such that

$$\mathbb{E}\|\widehat{\nabla}f(x)-\widehat{\nabla}f(x_{\star})\|^{2}\leq 2L(f(x)-f(x_{\star}))$$

reduces to *L*-smoothness if we replace $\widehat{\nabla}$ by ∇ :

$$f(x) - f(x_{\star}) \ge \frac{1}{2I} \|\nabla f(x) - \nabla f(x_{\star})\|^2$$

Corollary

define $\sigma^2 := \mathbb{E} \|\widehat{\nabla} f(x_\star)\|^2$. then

$$\mathbb{E}\|\widehat{\nabla}f(x)\|^2 \leq 4L(f(x) - f(x_*)) + 2\sigma^2, \quad \forall x$$

under ES, gradient variance is controlled by suboptimality and variance of the gradient at the optimum

L-ES condition for smooth convex functions

Theorem (special case of Gower et al., 2019)

Suppose each f_i is L_i -smooth and convex. Consider mini-batch stochastic gradients $\widehat{\nabla} f = \frac{1}{|S|} \sum_{i \in S} f_i(x)$ with batch-size $b_g = |S|$. Then

$$\mathbb{E}\|\widehat{\nabla}f(x)\|^2 \leq 4L(f(x) - f(x_{\star})) + 2\sigma^2,$$

with

$$L = \frac{m(b_g - 1)}{b_g(m - 1)} \frac{1}{m} \sum_{i=1}^{m} L_i + \frac{m - b_g}{b_g(m - 1)} \max_{1 \le i \le m} L_i$$

and

$$\sigma^{2} = \frac{m - b_{g}}{b_{g}(m - 1)} \frac{1}{m} \sum_{i=1}^{m} \|\nabla f_{i}(x_{\star})\|^{2}$$

sanity check: $\sigma^2 \rightarrow 0$ as $b_g \rightarrow n$

Back to SGD convergence

using the one-step lemma with $\mu\text{-strong}$ convexity and L-ES, we find

$$\mathbb{E}_{k} \|x_{k+1} - x_{\star}\|^{2} \leq (1 - \eta \mu) \|x_{k} - x_{\star}\|^{2} + 2\eta (2\eta L - 1) (f(x_{k}) - f(x_{\star})) + \eta^{2} 2\sigma^{2}$$

so, choosing stepsize $\eta \leq \frac{1}{2L}$,

$$\mathbb{E}_k ||x_{k+1} - x_{\star}||^2 \le (1 - \eta \mu) ||x_k - x_{\star}||^2 + \eta^2 2\sigma^2$$

SGD convergence contd

apply induction + take total expectation to get

$$\begin{split} \mathbb{E}\|x_{k+1} - x_{\star}\|^{2} &\leq (1 - \eta\mu)^{k+1}\|x_{0} - x_{\star}\|^{2} + \left(\sum_{j=0}^{k} (1 - \eta\mu)^{j}\right)\eta^{2}2\sigma^{2} \\ &\leq (1 - \eta\mu)^{k+1}\|x_{0} - x_{\star}\|^{2} + \frac{\eta2\sigma^{2}}{\mu} \end{split}$$

by summing the geometric series. choose $\eta \leq \frac{\mu\epsilon}{4\sigma^2}$, so

$$\mathbb{E}||x_{k+1} - x_{\star}||^{2} \le (1 - \eta\mu)^{k+1}||x_{0} - x_{\star}||^{2} + \frac{\epsilon}{2}$$

we can solve for k to find how many iterations are needed to reach error $\frac{\epsilon}{2}$:

$$k \ge (\eta \mu)^{-1} \log \left(\frac{2(f(x_0) - f(x_{\star}))}{\epsilon} \right)$$

SGD convergence with fixed stepsize

we have shown

Theorem

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is μ -strongly convex, with an L-ES stochastic gradient oracle. Run SGD with batchsize b_g and fixed stepsize $\eta = \min\left\{\frac{1}{2L}, \frac{\epsilon \mu}{4\sigma^2}\right\}$. Then for $k \geq (\eta \mu)^{-1} \log\left(\frac{2(f(x_0) - f(x_\star))}{\epsilon}\right)$ iterations,

$$\mathbb{E}\|x_k - x_\star\|^2 \le \epsilon$$

- ▶ same convergence rate as we'd get with decreasing stepsize sequence $\eta = \mathcal{O}(1/k)$
- but motivates variance reduction, which will give linear convergence!

Results: Optimization error

Results: Test error

The gradient is too noisy!

the expected smoothness condition shows the gradient is noisy,

$$\mathbb{E}\|\widehat{\nabla}f(x)\|^2 \leq 4L(f(x) - f(x_{\star})) + 2\sigma^2,$$

even at x_{\star}

- ▶ good news: $f(x) f^* \to 0$ as $x \to x_*$
- ▶ bad news: $\sigma^2 > 0$ even near x_{\star}

can we design an algorithm that eliminates this noise as $x \to x_\star$?

Stochastic Variance Reduced Gradient

Stochastic Variance Reduced Gradient (SVRG) uses a different stochastic gradient

$$g(x) = \widehat{\nabla}f(x) - \widehat{\nabla}f(x_s) + \nabla f(x_s)$$

where

- $ightharpoonup \widehat{
 abla}$ still denotes the minibatch gradient
- $x_s \in \mathbb{R}^n$ is a reference point
- ▶ $\nabla f(x_s) \widehat{\nabla} f(x_s)$ is a control variate introduced to reduce variance

 $g(x) \in \mathbb{R}^n$ is a stochastic gradient at $x \in \mathbb{R}^n$:

$$\mathbb{E}[g(x)] = \nabla f(x) - \nabla f(x_s) + \nabla f(x_s) = \nabla f(x),$$

Some useful identities

recall the following two identities for random variables X, Y:

1.
$$\mathbb{E}||X + Y||^2 \le 2\mathbb{E}||X||^2 + 2\mathbb{E}||Y||^2$$

2.
$$\mathbb{E}||X - \mathbb{E}[X]||^2 \leq \mathbb{E}||X||^2$$

Some useful identities

recall the following two identities for random variables X, Y:

1.
$$\mathbb{E}||X + Y||^2 \le 2\mathbb{E}||X||^2 + 2\mathbb{E}||Y||^2$$

2.
$$\mathbb{E}||X - \mathbb{E}[X]||^2 \le \mathbb{E}||X||^2$$

(exercise: prove these!)

SVRG reduces variance

variance of g(x) depends on suboptimality of x and x_s

$$\mathbb{E}\|g(x)\|^{2} = \mathbb{E}\|g(x) - \widehat{\nabla}f(x_{\star}) + \widehat{\nabla}f(x_{\star})\|^{2}$$

$$= \mathbb{E}\|\widehat{\nabla}f(x) - \widehat{\nabla}f(x_{\star}) + \widehat{\nabla}f(x_{\star}) - \widehat{\nabla}f(x_{s}) + \nabla f(x_{s})\|^{2}$$

$$\leq 2\mathbb{E}\|\widehat{\nabla}f(x) - \widehat{\nabla}f(x_{\star})\|^{2}$$

$$+2\mathbb{E}\|\widehat{\nabla}f(x_{s}) - \widehat{\nabla}f(x_{\star}) - \nabla f(x_{s})\|^{2}$$

$$= 2\mathbb{E}\|\widehat{\nabla}f(x) - \widehat{\nabla}f(x_{\star})\|^{2}$$

$$+2\mathbb{E}\|\widehat{\nabla}f(x_{s}) - \widehat{\nabla}f(x_{\star}) - \mathbb{E}[\widehat{\nabla}f(x_{s}) - \widehat{\nabla}f(x_{\star})]\|^{2}$$

$$= 2\mathbb{E}\|\widehat{\nabla}f(x) - \widehat{\nabla}f(x_{\star})\|^{2} + 2\mathbb{E}\|\widehat{\nabla}f(x_{s}) - \widehat{\nabla}f(x_{\star})\|^{2}$$

$$= 4L[f(x) - f(x_{\star}) + f(x_{s}) - f(x_{\star})]$$

hence Var(g(x)) o 0 as $f(x) o f_{\star}$, $f(x_s) o f_{\star}$

How to select x_s ?

to ensure x, $x_s \to x_\star$ (and so $Var(g(x)) \to 0$)

- update x_s as we make progress (so $f(x_s) \rightarrow f(x_\star)$)
- **b** don't update too often, as computing $\nabla f(x_s)$ is expensive

SVRG algorithm

- 1. initialize at x_0 and set $x_s = x_0$
- 2. for s = 0, ..., S
 - 2.1 compute and store $\nabla f(x_s)$
 - 2.2 for k = 0, ..., m-1

$$x_{k+1}^{(s)} = x_k^{(s)} - \eta \left(\widehat{\nabla} f(x_k^{(s)}) - \widehat{\nabla} f(x_s) + \nabla f(x_s) \right)$$

- 2.3 select x_{s+1} by uniformly sampling at random from $\{x_0^{(s)}, \dots, x_{m-1}^{(s)}\}$
- 2.4 set $x_0^{(s+1)} = x_{s+1}$
- 3. return x_S
- ▶ notice that $\mathbb{E} f_{s+1} = \frac{1}{m} \sum_{i=1}^{m} f(x_i^{(s)})$ (needed for proof)
- ▶ in practice, fine to set $f_{s+1} = f(x_m^{(s)})$ (last iterate)

SVRG convergence

Theorem

Run SVRG with $S=\mathcal{O}\left(\log\left(\frac{1}{\epsilon}\right)\right)$ outer iterations, $m=O(\kappa)$ inner iterations, and fixed stepsize $\eta=O(1/L)$. Then

$$\mathbb{E}[f(x_S)] - f(x_\star) \leq \epsilon.$$

The number of gradient oracle calls is bounded by

$$\mathcal{O}\left(\left(n+\kappa b_g\right)\log\left(\frac{1}{\epsilon}\right)\right).$$

SVRG convergence

Theorem

Run SVRG with $S=\mathcal{O}\left(\log\left(\frac{1}{\epsilon}\right)\right)$ outer iterations, $m=O(\kappa)$ inner iterations, and fixed stepsize $\eta=O(1/L)$. Then

$$\mathbb{E}[f(x_S)] - f(x_\star) \leq \epsilon.$$

The number of gradient oracle calls is bounded by

$$\mathcal{O}\left(\left(n+\kappa b_{g}\right)\log\left(\frac{1}{\epsilon}\right)\right).$$

- unlike SGD, SVRG converges linearly to the optimum
- when $\kappa = \mathcal{O}(n)$, SVRG makes only $\widetilde{\mathcal{O}}(nb_g)$ oracle calls, while GD makes $\widetilde{\mathcal{O}}(n^2)$ calls. so SVRG reduces the number of calls by n/b_g !

Proof of SVRG convergence

the argument may be broken down into two lemmas. We begin with the following one-step progress bound for outer-iteration \boldsymbol{s}

Lemma (One-step lemma)

Suppose we are at iteration k of outer-iteration s. Then

$$\mathbb{E}_{k} \|x_{k+1}^{(s)} - x_{\star}\|^{2} \leq \|x_{k}^{(s)} - x_{\star}\|^{2} + 2\eta (2\eta L - 1) [f(x_{k}^{(s)}) - f(x_{\star})] + 4\eta^{2} L[f(x_{s}) - f(x_{\star})]$$

Proof of One-step lemma

$$\begin{split} \mathbb{E}_{k} \|x_{k+1}^{(s)} - x_{\star}\|^{2} &= \\ \|x_{k}^{(s)} - x_{\star}\|^{2} - 2\eta \langle \nabla f(x_{k}), x_{k} - x_{\star} \rangle + \eta^{2} \mathbb{E}_{k} \| g(x_{k})\|^{2} \\ &\leq \|x_{k}^{(s)} - x_{\star}\|^{2} - 2\eta \left(f(x_{k}) - f(x_{\star}) \right) + \eta^{2} \mathbb{E}_{k} \| g(x_{k})\|^{2} \\ &\leq \|x_{k}^{(s)} - x_{\star}\|^{2} - 2\eta \left(f(x_{k}) - f(x_{\star}) \right) + \\ &4\eta^{2} \mathcal{L}[f(x) - f(x_{\star}) + f(x_{s}) - f(x_{\star}),] \end{split}$$

where the first inequality uses convexity

$$f(x_k) - f(x_{\star}) \leq \langle \nabla f(x_k), x_k - x_{\star} \rangle$$

so, after rearranging

$$\mathbb{E}_{k} \|x_{k+1}^{(s)} - x_{\star}\|^{2} \leq \|x_{k}^{(s)} - x_{\star}\|^{2} + 2\eta (2\eta L - 1) [f(x_{k}^{(s)}) - f(x_{\star})] + 4\eta^{2} L[f(x_{s}) - f(x_{\star})]$$

Outer iteration contraction

the next step is show to the follow contraction result for the outer-iterations.

Lemma (Outer iteration contraction)

Suppose we are in outer iteration s. Then

$$\mathbb{E}_{0:s-1}[f(x_s)] - f(x_{\star}) \leq \left[\frac{1}{\eta \mu (1 - 2\eta L) m} + \frac{2}{1 - 2\eta L} \right] (f(x_{s-1}) - f(x_{\star})),$$

where $\mathbb{E}_{0:s-1}$ denotes the expectation conditioned on outer-iterations 0 through s-1.

Proof of outer iteration contraction

summing the inequality in the one-step lemma from $k = 0, \dots, m-1$,

$$\sum_{k=1}^{m} \mathbb{E}_{k} \|x_{k+1}^{(s)} - x_{\star}\|^{2} \leq \sum_{k=0}^{m-1} \|x_{k}^{(s)} - x_{\star}\|^{2} + 2\eta m (2\eta L - 1) \frac{1}{m} \sum_{k=0}^{m-1} [f(x_{k}^{(s)}) - f(x_{\star})] + 4m\eta^{2} [f(x_{s-1}) - f(x_{\star})].$$

Proof of outer iteration contraction

summing the inequality in the one-step lemma from k = 0, ..., m - 1,

$$\sum_{k=1}^{m} \mathbb{E}_{k} \|x_{k+1}^{(s)} - x_{\star}\|^{2} \leq \sum_{k=0}^{m-1} \|x_{k}^{(s)} - x_{\star}\|^{2} + 2\eta m (2\eta L - 1) \frac{1}{m} \sum_{k=0}^{m-1} [f(x_{k}^{(s)}) - f(x_{\star})] + 4m\eta^{2} [f(x_{s-1}) - f(x_{\star})].$$

taking the expectation over all inner-iterations conditioned on outer-iterations 0 through s-1+ cancellation, yields

$$\mathbb{E}_{0:s-1} \|x_m^{(s)} - x_{\star}\|^2 \le \|x_{s-1} - x_{\star}\|^2 +$$

$$+ 2\eta m (2\eta L - 1) (\mathbb{E}_{0:s-1} [f(x_s)] - f(x_{\star})) + 4m\eta^2 L[f(x_{s-1}) - f(x_{\star})].$$

Proof contd.

rearranging gives

$$\mathbb{E}_{0:s-1} \|x_s - x_\star\|^2 + 2\eta m (1 - 2\eta L) (\mathbb{E}_{0:s-1} [f(x_s)] - f(x_\star))$$

$$\leq 2 \left(\frac{1}{\mu} + 2m\eta^2 L\right) [f(x_{s-1}) - f(x_\star)],$$

where we used strong convexity of f

$$||x_{s-1}-x_{\star}||^2 \leq \frac{2}{u} (f(x_{s-1})-f(x_{\star}))$$

hence (dropping $\mathbb{E}_{0:s-1}||x_s-x_\star||^2 \geq 0$)

$$2\eta m (1 - 2\eta L) (\mathbb{E}_{0:s-1} [f(x_s)] - f(x_{\star}))$$

$$\leq 2\left(\frac{1}{\mu}+2m\eta^2L\right)[f(x_{s-1})-f(x_{\star})],$$

and so the claim follows by rearrangement

Finishing the proof

$$\mathbb{E}_{0:s-1}[f(x_{s+1})] - f(x_{\star}) \le \left[\frac{1}{\eta \mu (1 - 2\eta L)m} + \frac{2}{1 - 2\eta L}\right] (f(x_s) - f(x_{\star}))$$
setting $\eta = \frac{1}{12L}$ and $m = 20\frac{L}{2}$, we find

setting $\eta = \frac{1}{10I}$ and $m = 20\frac{\mathcal{L}}{u}$, we find

$$\mathbb{E}_{0:s-1}[f(x_s)] - f(x_*) \le \frac{1}{2} (f(x_{s-1}) - f(x_*))$$

now taking expectations over all outer iterations and recursing,

$$\mathbb{E}[f(x_s)] - f(x_{\star}) \leq \left(\frac{1}{2}\right)^s \left(f(x_0) - f(x_{\star})\right),\,$$

which gives the theorem after setting $s = O(\log(1/\epsilon))$

Q: how to select update frequency m?

Q: how to select update frequency m? **A:** not obvious, as the dependence upon L/μ is loose. In practice, use m n/b_g update every 1–2 epochs

Q: how to select update frequency *m*?

A: not obvious, as the dependence upon L/μ is loose. In

practice, use $m \ n/b_g$ update every 1–2 epochs

Q: how to choose step-size η ?

Q: how to select update frequency *m*?

A: not obvious, as the dependence upon L/μ is loose. In

practice, use $m \ n/b_g$ update every 1–2 epochs

Q: how to choose step-size η ?

A: monitor convergence. theoretical step-size often too small

Q: how to select update frequency *m*?

A: not obvious, as the dependence upon L/μ is loose. In

practice, use $m \ n/b_g$ update every 1–2 epochs

Q: how to choose step-size η ?

A: monitor convergence. theoretical step-size often too small

Q: does SVRG work for non-convex problems like deep learning?

Q: how to select update frequency *m*?

A: not obvious, as the dependence upon L/μ is loose. In practice, use $m \ n/b_{\rm g}$ update every 1–2 epochs

Q: how to choose step-size η ?

A: monitor convergence. theoretical step-size often too small

Q: does SVRG work for non-convex problems like deep learning?

A: alas, no: variance reduction may worsen performance for

nonconvex problems!

SVRG numerical performance

- revisit the same logistic regression example
- ▶ run SVRG with step-size $\eta = 4$
- update snapshot every epoch

Results: Optimization error

Results: Test loss

SVRG: Final comments

- variance reduction is a powerful tool for convex finite-sum optimization, as it delivers linear convergence
- ► SVRG has motivated the development of better (usually) variance reduced algorithms such as SAGA and Katyusha
- outside of finite-sum convex optimization, variance reduction hasn't proven to be terribly useful