
CME 307/MSE 311: Optimization

Acceleration, Stochastic Gradient Descent, and
Variance Reduction

Professor Udell

Management Science and Engineering
Stanford

April 26, 2023

1 / 48

Convergence of gradient descent

unconstrained minimization: find x ∈ Rn to solve

minimize f (x) (1)

where f : Rn → R is convex and differentiable

we analyzed gradient descent (GD) on this problem:

▶ a point x is ϵ-suboptimal if f (x)− f ⋆ ≤ ϵ

▶ when f is L-smooth and µ-PL (or µ-strongly convex), we
showed GD converges to sub-optimality ϵ in at most

T = O
(
κ log

(
1

ϵ

))
iterations,

where κ := L
µ is the condition number

2 / 48

Acceleration: motivation

Definition
a first-order method uses only a first-order oracle for f : Rn → R

(i.e., gradient and function evaluation) to minimize f (x)

GD x ← x − α∇f (x) is a first-order method

Q: is GD the best first-order method for L-smooth, µ-strongly
convex functions?
A: no! Nemirovski and Yudin showed a lower-bound of

Topt = Ω

(√
κ log

(
1

ϵ

))
iterations

to find an ϵ-suboptimal point of any L-smooth, µ-strongly
convex function
notice: same rate as CG if f is quadratic

3 / 48

Acceleration: motivation

Definition
a first-order method uses only a first-order oracle for f : Rn → R

(i.e., gradient and function evaluation) to minimize f (x)

GD x ← x − α∇f (x) is a first-order method

Q: is GD the best first-order method for L-smooth, µ-strongly
convex functions?

A: no! Nemirovski and Yudin showed a lower-bound of

Topt = Ω

(√
κ log

(
1

ϵ

))
iterations

to find an ϵ-suboptimal point of any L-smooth, µ-strongly
convex function
notice: same rate as CG if f is quadratic

3 / 48

Acceleration: motivation

Definition
a first-order method uses only a first-order oracle for f : Rn → R

(i.e., gradient and function evaluation) to minimize f (x)

GD x ← x − α∇f (x) is a first-order method

Q: is GD the best first-order method for L-smooth, µ-strongly
convex functions?
A: no! Nemirovski and Yudin showed a lower-bound of

Topt = Ω

(√
κ log

(
1

ϵ

))
iterations

to find an ϵ-suboptimal point of any L-smooth, µ-strongly
convex function
notice: same rate as CG if f is quadratic

3 / 48

A worst-case quadratic function

the lower bound can be obtained by constructing a particularly
hard problem instance using quadratic functions

▶ easier to work in the infinite dimensional-space ℓ2(R),
which consists of vectors x of infinite length, satisfying

∥x∥2 =
∞∑
j=1

x2j <∞

▶ the evil quadratic function is then given by

f (x) =
µ(κf − 1)

8

x21 +
∞∑
j=1

(xj − xj+1)
2 − 2x1

+
µ

2
∥x∥2,

where µ > 0 and κf > 1
▶ above example actually gives a family of hard quadratic

functions parametrized by µ, κf

source: Section 2.1, Nesterov, 2018

4 / 48

A worst-case quadratic function

the lower bound can be obtained by constructing a particularly
hard problem instance using quadratic functions

▶ easier to work in the infinite dimensional-space ℓ2(R),
which consists of vectors x of infinite length, satisfying

∥x∥2 =
∞∑
j=1

x2j <∞

▶ the evil quadratic function is then given by

f (x) =
µ(κf − 1)

8

x21 +
∞∑
j=1

(xj − xj+1)
2 − 2x1

+
µ

2
∥x∥2,

where µ > 0 and κf > 1
▶ above example actually gives a family of hard quadratic

functions parametrized by µ, κf

source: Section 2.1, Nesterov, 2018

4 / 48

A worst-case quadratic function

the lower bound can be obtained by constructing a particularly
hard problem instance using quadratic functions

▶ easier to work in the infinite dimensional-space ℓ2(R),
which consists of vectors x of infinite length, satisfying

∥x∥2 =
∞∑
j=1

x2j <∞

▶ the evil quadratic function is then given by

f (x) =
µ(κf − 1)

8

x21 +
∞∑
j=1

(xj − xj+1)
2 − 2x1

+
µ

2
∥x∥2,

where µ > 0 and κf > 1
▶ above example actually gives a family of hard quadratic

functions parametrized by µ, κf

source: Section 2.1, Nesterov, 2018
4 / 48

The lower bound

Using the family of quadratics on the preceding slide, the
following theorem may be shown

Theorem (Nesterov Theorem 2.1.13)

Let µ > 0, κf > 1. SupposeM is a first-order method such
that for any input function f ,M generates a sequence satisfying

xk ∈ x0 + span{∇f (x0), . . . ,∇f (xk)}, ∀k

Then there exists a L-smooth, µ-strongly convex function with
L/µ = κf such that the sequence output byM applied to f
satisfies

∥xk − x⋆∥2 ≥
(√

κf − 1
√
κf + 1

)2k

∥x0 − x⋆∥2,

f (xk)− f (x⋆) ≥
µ

2

(√
κf − 1
√
κf + 1

)2k

∥x0 − x⋆∥2

5 / 48

Accelerated Gradient Descent

Nesterov’s accelerated gradient method (AGD)

▶ a first-order method

▶ that matches the lower bound

so, converges faster than GD (esp. on ill-conditioned functions)

(one variant of) Nesterov’s AGD:

1. Choose x0, y0 ∈ Rn

2. for k = 0, 1, . . . ,T ,

xk+1 = yk − α∇f (yk)
yk+1 = xk+1 + β (xk+1 − xk)

3. Return xk+1

achieves lower bound when α = 1
L , β =

√
κ−1√
κ+1

source: Section 2.2, Nesterov, 2018
6 / 48

GD vs. AGD: numerical example

goal is to solve the logistic regression problem

minimize
1

m

m∑
i=1

log
(
1 + exp

(
−biaTi x

))
+

1

m
∥x∥2

with variable x on rcv1 dataset, with data matrix
A ∈ R20,242×47,236 and labels b ∈ R20,242

▶ GD and AGD both use theoretically-chosen stepsizes:
▶ GD is run with stepsize 1

L , which for this example equals 4

▶ AGD is run with α = 1
L and β =

√
κ−1√
κ+1

▶ here strong convexity µ = 1
m from the regularizer

7 / 48

GD vs. AGD results

0 100 200 300 400 500
Iteration

10 6

10 5

10 4

10 3

10 2

10 1

100

f t
f

GD
AGD

8 / 48

AGD summary and closing remarks

▶ AGD is theoretically optimal among first-order methods for
L-smooth and µ-strongly convex functions

▶ converges to ϵ-suboptimality in at most

O
(√

κ log

(
1

ϵ

))
iterations

▶ despite its elegance, AGD is rarely used in practice
(quasi-Newton methods work better and are more stable)

▶ however, it forms the basis for more useful accelerated
gradient methods like FISTA and Katyusha

9 / 48

Outline

Stochastic optimization

Finite sum minimization

10 / 48

Minimizing a sum

finite sum minimization: solve

minimize
1

m

m∑
i=1

fi (x)

examples:

▶ least squares: fi (x) = (aTi x − bi)
2

▶ logistic regression: fi (x) = log(1 + exp
(
−biaTi x

)
)

▶ maximum likelihood estimation: fi (x) is -loglik of
observation i given parameter x

▶ machine learning: fi is misfit of model x on example i

11 / 48

Minimizing a sum

finite sum minimization: solve

minimize
1

m

m∑
i=1

fi (x)

with variable x ∈ Rn

quandary:

▶ solving a problem with more data should be easier

▶ but complexity of algorithms increases with m!

goal: find algorithms that work better given more data
(or at least, not worse)

idea: throw away data! (cleverly)

12 / 48

Minimizing a sum

finite sum minimization: solve

minimize
1

m

m∑
i=1

fi (x)

with variable x ∈ Rn

quandary:

▶ solving a problem with more data should be easier

▶ but complexity of algorithms increases with m!

goal: find algorithms that work better given more data
(or at least, not worse)
idea:

throw away data! (cleverly)

12 / 48

Minimizing a sum

finite sum minimization: solve

minimize
1

m

m∑
i=1

fi (x)

with variable x ∈ Rn

quandary:

▶ solving a problem with more data should be easier

▶ but complexity of algorithms increases with m!

goal: find algorithms that work better given more data
(or at least, not worse)
idea: throw away data! (cleverly)

12 / 48

Minimizing an expectation

Stochastic optimization: solve

minimize Ef (x) = Eωf (x ;ω)

with variable x ∈ Rn

▶ random loss function f

▶ or equivalently, function f (·;ω) of random variable ω

examples: data ω = (a, b) is random

▶ least squares: f (x ;ω) = (aT x − b)2

▶ logistic regression: f (x ;ω) = log(1 + exp
(
−baT x

)
)

▶ maximum likelihood estimation: f (x ;ω) is -loglik of
observation ω given parameter x

▶ machine learning: f (x ;ω) is misfit of model x on example ω

minimize test loss, not just training loss

13 / 48

Minimizing an expectation

Stochastic optimization: solve

minimize Ef (x) = Eωf (x ;ω)

with variable x ∈ Rn

▶ random loss function f

▶ or equivalently, function f (·;ω) of random variable ω

examples: data ω = (a, b) is random

▶ least squares: f (x ;ω) = (aT x − b)2

▶ logistic regression: f (x ;ω) = log(1 + exp
(
−baT x

)
)

▶ maximum likelihood estimation: f (x ;ω) is -loglik of
observation ω given parameter x

▶ machine learning: f (x ;ω) is misfit of model x on example ω

minimize test loss, not just training loss
13 / 48

Stochastic optimization: what distribution?

stochastic optimization problem

minimize Eω∼µΩ
[f (ω, x)]

variable x ∈ Rn (2)

with f (ω, x) : Ω× Rn convex, Ω ⊆ Rn, ω a random variable
distributed according to probability measure µΩ

objective is expected cost under the randomness due to ω:

Eω∼µΩ
[f (ω, x)] =

∫
Ω
f (ω; x)dµΩ(ω)

14 / 48

Stochastic optimization: examples

1. n = 1,Ω = R, and f (ω, x) = (x − ω)2.

minimize Eω∼µR

[
(x − ω)2

]

then x⋆ = Eω∼µR [ω] and f⋆ = Varω∼µR [ω].

2. n = 1,Ω = R, and f (ω, x) = |x − ω|.

minimize Eω∼µR [|x − ω|]

then x⋆ = the median of µR

3. Ω = Rn, µRn = 1
m

∑m
i=1 δωi . we get the finite sum

minimization problem

minimize
1

m

m∑
i=1

f (ωi , x).

15 / 48

Stochastic optimization: examples

1. n = 1,Ω = R, and f (ω, x) = (x − ω)2.

minimize Eω∼µR

[
(x − ω)2

]
then x⋆ =

Eω∼µR [ω] and f⋆ = Varω∼µR [ω].

2. n = 1,Ω = R, and f (ω, x) = |x − ω|.

minimize Eω∼µR [|x − ω|]

then x⋆ = the median of µR

3. Ω = Rn, µRn = 1
m

∑m
i=1 δωi . we get the finite sum

minimization problem

minimize
1

m

m∑
i=1

f (ωi , x).

15 / 48

Stochastic optimization: examples

1. n = 1,Ω = R, and f (ω, x) = (x − ω)2.

minimize Eω∼µR

[
(x − ω)2

]
then x⋆ = Eω∼µR [ω] and f⋆ = Varω∼µR [ω].

2. n = 1,Ω = R, and f (ω, x) = |x − ω|.

minimize Eω∼µR [|x − ω|]

then x⋆ = the median of µR

3. Ω = Rn, µRn = 1
m

∑m
i=1 δωi . we get the finite sum

minimization problem

minimize
1

m

m∑
i=1

f (ωi , x).

15 / 48

Stochastic optimization: examples

1. n = 1,Ω = R, and f (ω, x) = (x − ω)2.

minimize Eω∼µR

[
(x − ω)2

]
then x⋆ = Eω∼µR [ω] and f⋆ = Varω∼µR [ω].

2. n = 1,Ω = R, and f (ω, x) = |x − ω|.

minimize Eω∼µR [|x − ω|]

then x⋆ = the median of µR

3. Ω = Rn, µRn = 1
m

∑m
i=1 δωi . we get the finite sum

minimization problem

minimize
1

m

m∑
i=1

f (ωi , x).

15 / 48

Stochastic optimization: examples

1. n = 1,Ω = R, and f (ω, x) = (x − ω)2.

minimize Eω∼µR

[
(x − ω)2

]
then x⋆ = Eω∼µR [ω] and f⋆ = Varω∼µR [ω].

2. n = 1,Ω = R, and f (ω, x) = |x − ω|.

minimize Eω∼µR [|x − ω|]

then x⋆ =

the median of µR

3. Ω = Rn, µRn = 1
m

∑m
i=1 δωi . we get the finite sum

minimization problem

minimize
1

m

m∑
i=1

f (ωi , x).

15 / 48

Stochastic optimization: examples

1. n = 1,Ω = R, and f (ω, x) = (x − ω)2.

minimize Eω∼µR

[
(x − ω)2

]
then x⋆ = Eω∼µR [ω] and f⋆ = Varω∼µR [ω].

2. n = 1,Ω = R, and f (ω, x) = |x − ω|.

minimize Eω∼µR [|x − ω|]

then x⋆ = the median of µR

3. Ω = Rn, µRn = 1
m

∑m
i=1 δωi . we get the finite sum

minimization problem

minimize
1

m

m∑
i=1

f (ωi , x).

15 / 48

Stochastic optimization: examples

1. n = 1,Ω = R, and f (ω, x) = (x − ω)2.

minimize Eω∼µR

[
(x − ω)2

]
then x⋆ = Eω∼µR [ω] and f⋆ = Varω∼µR [ω].

2. n = 1,Ω = R, and f (ω, x) = |x − ω|.

minimize Eω∼µR [|x − ω|]

then x⋆ = the median of µR

3. Ω = Rn, µRn = 1
m

∑m
i=1 δωi . we get the finite sum

minimization problem

minimize
1

m

m∑
i=1

f (ωi , x).

15 / 48

Stochastic gradient oracle

Definition
a stochastic gradient oracle G, when queried at x ∈ Rn produces
g(ω; x) ∈ Rn satisfying

Eω∼µΩ
[g(ω; x)] = ∇F (x)

i.e., G produces an unbiased estimate of the true gradient ∇F (x)

Q: examples of stochastic gradient oracle?
A: minibatch gradient

1

|S |
∑
ω∈S
∇fi (ω, x)

notation: use ∇̂f (x) to denote stochastic gradient at x

16 / 48

Stochastic gradient oracle

Definition
a stochastic gradient oracle G, when queried at x ∈ Rn produces
g(ω; x) ∈ Rn satisfying

Eω∼µΩ
[g(ω; x)] = ∇F (x)

i.e., G produces an unbiased estimate of the true gradient ∇F (x)

Q: examples of stochastic gradient oracle?
A: minibatch gradient

1

|S |
∑
ω∈S
∇fi (ω, x)

notation: use ∇̂f (x) to denote stochastic gradient at x

16 / 48

Stochastic gradient oracle

Definition
a stochastic gradient oracle G, when queried at x ∈ Rn produces
g(ω; x) ∈ Rn satisfying

Eω∼µΩ
[g(ω; x)] = ∇F (x)

i.e., G produces an unbiased estimate of the true gradient ∇F (x)

Q: examples of stochastic gradient oracle?

A: minibatch gradient

1

|S |
∑
ω∈S
∇fi (ω, x)

notation: use ∇̂f (x) to denote stochastic gradient at x

16 / 48

Stochastic gradient oracle

Definition
a stochastic gradient oracle G, when queried at x ∈ Rn produces
g(ω; x) ∈ Rn satisfying

Eω∼µΩ
[g(ω; x)] = ∇F (x)

i.e., G produces an unbiased estimate of the true gradient ∇F (x)

Q: examples of stochastic gradient oracle?
A: minibatch gradient

1

|S |
∑
ω∈S
∇fi (ω, x)

notation: use ∇̂f (x) to denote stochastic gradient at x

16 / 48

Stochastic gradient descent (SGD)

SGD:

1. Choose x0 ∈ Rn

2. for k = 0, 1, . . .

i. query G at xk to obtain g(ωk , xk)
ii. compute update:

xk+1 = xk − ηkg(ωk , xk)

▶ SGD is not a descent method!

▶ SGD exactly the same as GD, except that it uses a
stochastic gradient g(ωk , xk) rather than the true gradient

▶ selection of stepsize ηk is challenging!

17 / 48

A typical convergence result

Theorem (General SGD convergence)

Consider (2) with smooth and strongly convex f and stochastic
gradient oracle satisfying

Eω∥g(ω, x)∥2 ≤ M1 +M2∥∇F (ω, x)∥2.

1. for an appropriate fixed stepsize ηk = O(1),

lim
k→∞

E[f (ωk , xk)]− f⋆ = O(1)

2. for decreasing stepsizes ηk = O(1/k),

E[f (ωk , xk)]− f⋆ = O(1/k)

18 / 48

SGD convergence: discussion

▶ with fixed stepsize, the algorithm converges to ϵ-sublevel set

▶ convergence of SGD requires a decreasing stepsize =⇒
slow!

contrast to GD, which converges to the exact optimum even
with fixed stepsize

analysis is tight: there is a matching lower bound.
Agarwal et al., 2012 shows that for strongly convex problems,
any algorithm using a stochastic gradient oracle must make at
least Ω(1/ϵ) queries to obtain an ϵ-suboptimal point

don’t despair: add more assumptions!

19 / 48

SGD convergence: discussion

▶ with fixed stepsize, the algorithm converges to ϵ-sublevel set

▶ convergence of SGD requires a decreasing stepsize =⇒
slow!

contrast to GD, which converges to the exact optimum even
with fixed stepsize

analysis is tight: there is a matching lower bound.
Agarwal et al., 2012 shows that for strongly convex problems,
any algorithm using a stochastic gradient oracle must make at
least Ω(1/ϵ) queries to obtain an ϵ-suboptimal point

don’t despair: add more assumptions!

19 / 48

Outline

Stochastic optimization

Finite sum minimization

20 / 48

Finite-sum minimization

return to finite sum problem:

minimize
1

m

m∑
i=1

fi (x), (3)

where each fi is Li -smooth and convex

why use SGD for finite sum minimization?

▶ evaluating minibatch gradient is cheaper per iteration

▶ converges faster than GD b/c each iteration is faster

21 / 48

Convergence of SGD

prove SGD minimizes finite sum (3):

∥xk+1 − x⋆∥2 = ∥xk − x⋆ − η∇̂f (xk)∥2

= ∥xk − x⋆∥2 − 2η⟨xk − x⋆, ∇̂f (xk)⟩+ η2∥∇̂f (xk)∥2.

take expectation wrt ∇̂f (xk):

Ek∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 − 2η⟨xk − x⋆,∇f (xk)⟩+ η2Ek∥∇̂f (xk)∥2

≤ (1− ηµ)∥xk − x⋆∥2 − 2η (f (xk)− f (x⋆))

+ η2Ek∥∇̂f (xk)∥2

using strong convexity:

f (x⋆) ≥ f (xk) +∇f (xk)T (x⋆ − xk) +
µ

2
∥x⋆ − xk∥2.

22 / 48

Convergence of SGD

prove SGD minimizes finite sum (3):

∥xk+1 − x⋆∥2 = ∥xk − x⋆ − η∇̂f (xk)∥2

= ∥xk − x⋆∥2 − 2η⟨xk − x⋆, ∇̂f (xk)⟩+ η2∥∇̂f (xk)∥2.

take expectation wrt ∇̂f (xk):

Ek∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 − 2η⟨xk − x⋆,∇f (xk)⟩+ η2Ek∥∇̂f (xk)∥2

≤ (1− ηµ)∥xk − x⋆∥2 − 2η (f (xk)− f (x⋆))

+ η2Ek∥∇̂f (xk)∥2

using strong convexity:

f (x⋆) ≥ f (xk) +∇f (xk)T (x⋆ − xk) +
µ

2
∥x⋆ − xk∥2.

22 / 48

Convergence of SGD

prove SGD minimizes finite sum (3):

∥xk+1 − x⋆∥2 = ∥xk − x⋆ − η∇̂f (xk)∥2

= ∥xk − x⋆∥2 − 2η⟨xk − x⋆, ∇̂f (xk)⟩+ η2∥∇̂f (xk)∥2.

take expectation wrt ∇̂f (xk):

Ek∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 − 2η⟨xk − x⋆,∇f (xk)⟩+ η2Ek∥∇̂f (xk)∥2

≤ (1− ηµ)∥xk − x⋆∥2 − 2η (f (xk)− f (x⋆))

+ η2Ek∥∇̂f (xk)∥2

using strong convexity:

f (x⋆) ≥ f (xk) +∇f (xk)T (x⋆ − xk) +
µ

2
∥x⋆ − xk∥2.

22 / 48

One-step lemma

we have shown the following progress bound for one step of SGD

Lemma
at iteration k of SGD,

Ek∥xk+1 − x⋆∥2

≤ (1− ηµ)∥xk − x⋆∥2 − 2η (f (xk)− f (x⋆)) + η2Ek∥∇̂f (xk)∥2

to show convergence, we must bound Ek∥∇̂f (xk)∥2

we will follow the approach of Gower et al., 2019

23 / 48

One-step lemma

we have shown the following progress bound for one step of SGD

Lemma
at iteration k of SGD,

Ek∥xk+1 − x⋆∥2

≤ (1− ηµ)∥xk − x⋆∥2 − 2η (f (xk)− f (x⋆)) + η2Ek∥∇̂f (xk)∥2

to show convergence, we must bound Ek∥∇̂f (xk)∥2

we will follow the approach of Gower et al., 2019

23 / 48

Expected smoothness

Definition (Expected smoothness)

f satisfies L-expected smoothness (L-ES) if ∃L > 0 such that

E∥∇̂f (x)− ∇̂f (x⋆)∥2 ≤ 2L(f (x)− f (x⋆))

reduces to L-smoothness if we replace ∇̂ by ∇:

f (x)− f (x⋆) ≥
1

2L
∥∇f (x)−∇f (x⋆)∥2

Corollary

define σ2 := E∥∇̂f (x⋆)∥2. then

E∥∇̂f (x)∥2 ≤ 4L(f (x)− f (x⋆)) + 2σ2, ∀x

under ES, gradient variance is controlled by suboptimality and
variance of the gradient at the optimum

24 / 48

Expected smoothness

Definition (Expected smoothness)

f satisfies L-expected smoothness (L-ES) if ∃L > 0 such that

E∥∇̂f (x)− ∇̂f (x⋆)∥2 ≤ 2L(f (x)− f (x⋆))

reduces to L-smoothness if we replace ∇̂ by ∇:

f (x)− f (x⋆) ≥
1

2L
∥∇f (x)−∇f (x⋆)∥2

Corollary

define σ2 := E∥∇̂f (x⋆)∥2. then

E∥∇̂f (x)∥2 ≤ 4L(f (x)− f (x⋆)) + 2σ2, ∀x

under ES, gradient variance is controlled by suboptimality and
variance of the gradient at the optimum

24 / 48

Expected smoothness

Definition (Expected smoothness)

f satisfies L-expected smoothness (L-ES) if ∃L > 0 such that

E∥∇̂f (x)− ∇̂f (x⋆)∥2 ≤ 2L(f (x)− f (x⋆))

reduces to L-smoothness if we replace ∇̂ by ∇:

f (x)− f (x⋆) ≥
1

2L
∥∇f (x)−∇f (x⋆)∥2

Corollary

define σ2 := E∥∇̂f (x⋆)∥2. then

E∥∇̂f (x)∥2 ≤ 4L(f (x)− f (x⋆)) + 2σ2, ∀x

under ES, gradient variance is controlled by suboptimality and
variance of the gradient at the optimum

24 / 48

L-ES condition for smooth convex functions

Theorem (special case of Gower et al., 2019)

Suppose each fi is Li -smooth and convex. Consider mini-batch
stochastic gradients ∇̂f = 1

|S |
∑

i∈S fi (x) with batch-size

bg = |S |. Then

E∥∇̂f (x)∥2 ≤ 4L(f (x)− f (x⋆)) + 2σ2,

with

L =
m(bg − 1)

bg (m − 1)

1

m

m∑
i=1

Li +
m − bg

bg (m − 1)
max

1≤i≤m
Li

and

σ2 =
m − bg

bg (m − 1)

1

m

m∑
i=1

∥∇fi (x⋆)∥2

sanity check: σ2 → 0 as bg → n
25 / 48

Back to SGD convergence

using the one-step lemma with µ-strong convexity and L-ES, we
find

Ek∥xk+1 − x⋆∥2 ≤ (1− ηµ)∥xk − x⋆∥2 + 2η(2ηL− 1) (f (xk)− f (x⋆))

+ η22σ2

so, choosing stepsize η ≤ 1
2L ,

Ek∥xk+1 − x⋆∥2 ≤ (1− ηµ)∥xk − x⋆∥2 + η22σ2

26 / 48

SGD convergence contd

apply induction + take total expectation to get

E∥xk+1 − x⋆∥2 ≤ (1− ηµ)k+1∥x0 − x⋆∥2 +

 k∑
j=0

(1− ηµ)j

 η22σ2

≤ (1− ηµ)k+1∥x0 − x⋆∥2 +
η2σ2

µ

by summing the geometric series. choose η ≤ µϵ
4σ2 , so

E∥xk+1 − x⋆∥2 ≤ (1− ηµ)k+1∥x0 − x⋆∥2 +
ϵ

2

we can solve for k to find how many iterations are needed to
reach error ϵ

2 :

k ≥ (ηµ)−1 log

(
2(f (x0)− f (x⋆))

ϵ

)
27 / 48

SGD convergence with fixed stepsize

we have shown

Theorem
Suppose f : Rn → R is µ-strongly convex, with an L-ES
stochastic gradient oracle. Run SGD with batchsize bg and fixed
stepsize η = min

{
1
2L ,

ϵµ
4σ2

}
. Then for

k ≥ (ηµ)−1 log
(
2(f (x0)−f (x⋆))

ϵ

)
iterations,

E∥xk − x⋆∥2 ≤ ϵ

▶ same convergence rate as we’d get with decreasing stepsize
sequence η = O(1/k)

▶ but motivates variance reduction, which will give linear
convergence!

28 / 48

Results: Optimization error

0 100 200 300 400 500
Epoch

10 6

10 5

10 4

10 3

10 2

10 1

100

f t
f

GD
AGD
SGD

29 / 48

Results: Test error

0 100 200 300 400 500
Epoch

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

GD
AGD
SGD

30 / 48

The gradient is too noisy!

the expected smoothness condition shows the gradient is noisy,

E∥∇̂f (x)∥2 ≤ 4L(f (x)− f (x⋆)) + 2σ2,

even at x⋆

▶ good news: f (x)− f ⋆ → 0 as x → x⋆
▶ bad news: σ2 > 0 even near x⋆

can we design an algorithm that eliminates this noise as x → x⋆?

31 / 48

Stochastic Variance Reduced Gradient

Stochastic Variance Reduced Gradient (SVRG) uses a different
stochastic gradient

g(x) = ∇̂f (x)− ∇̂f (xs) +∇f (xs)

where

▶ ∇̂ still denotes the minibatch gradient

▶ xs ∈ Rn is a reference point

▶ ∇f (xs)− ∇̂f (xs) is a control variate introduced to reduce
variance

g(x) ∈ Rn is a stochastic gradient at x ∈ Rn:

E[g(x)] = ∇f (x)−∇f (xs) +∇f (xs) = ∇f (x),

32 / 48

Some useful identities

recall the following two identities for random variables X ,Y :

1. E∥X + Y ∥2 ≤ 2E∥X∥2 + 2E∥Y ∥2

2. E∥X − E[X]∥2 ≤ E∥X∥2

(exercise: prove these!)

33 / 48

Some useful identities

recall the following two identities for random variables X ,Y :

1. E∥X + Y ∥2 ≤ 2E∥X∥2 + 2E∥Y ∥2

2. E∥X − E[X]∥2 ≤ E∥X∥2

(exercise: prove these!)

33 / 48

SVRG reduces variance

variance of g(x) depends on suboptimality of x and xs

E∥g(x)∥2 = E∥g(x)− ∇̂f (x⋆) + ∇̂f (x⋆)∥2

= E∥∇̂f (x)− ∇̂f (x⋆) + ∇̂f (x⋆)− ∇̂f (xs) +∇f (xs)∥2

≤ 2E∥∇̂f (x)− ∇̂f (x⋆)∥2

+2E∥∇̂f (xs)− ∇̂f (x⋆)−∇f (xs)∥2

= 2E∥∇̂f (x)− ∇̂f (x⋆)∥2

+2E∥∇̂f (xs)− ∇̂f (x⋆)− E[∇̂f (xs)− ∇̂f (x⋆)]∥2

= 2E∥∇̂f (x)− ∇̂f (x⋆)∥2 + 2E∥∇̂f (xs)− ∇̂f (x⋆)∥2

= 4L[f (x)− f (x⋆) + f (xs)− f (x⋆)]

hence Var(g(x))→ 0 as f (x)→ f⋆, f (xs)→ f⋆

34 / 48

How to select xs?

to ensure x , xs → x⋆ (and so Var(g(x))→ 0)

▶ update xs as we make progress (so f (xs)→ f (x⋆))

▶ don’t update too often, as computing ∇f (xs) is expensive

35 / 48

SVRG algorithm

1. initialize at x0 and set xs = x0
2. for s = 0, . . . ,S

2.1 compute and store ∇f (xs)
2.2 for k = 0, . . . ,m − 1

x
(s)
k+1 = x

(s)
k − η

(
∇̂f (x (s)k)− ∇̂f (xs) +∇f (xs)

)
2.3 select xs+1 by uniformly sampling at random from

{x (s)0 , . . . , x
(s)
m−1}

2.4 set x
(s+1)
0 = xs+1

3. return xS

▶ notice that Efs+1 =
1
m

∑m
i=1 f (x

(s)
i (needed for proof)

▶ in practice, fine to set fs+1 = f (x
(s)
m (last iterate)

36 / 48

SVRG convergence

Theorem
Run SVRG with S = O

(
log

(
1
ϵ

))
outer iterations, m = O(κ)

inner iterations, and fixed stepsize η = O(1/L). Then

E[f (xS)]− f (x⋆) ≤ ϵ.

The number of gradient oracle calls is bounded by

O
(
(n + κbg) log

(
1

ϵ

))
.

▶ unlike SGD, SVRG converges linearly to the optimum

▶ when κ = O(n), SVRG makes only Õ(nbg) oracle calls,

while GD makes Õ(n2) calls. so SVRG reduces the number
of calls by n/bg !

37 / 48

SVRG convergence

Theorem
Run SVRG with S = O

(
log

(
1
ϵ

))
outer iterations, m = O(κ)

inner iterations, and fixed stepsize η = O(1/L). Then

E[f (xS)]− f (x⋆) ≤ ϵ.

The number of gradient oracle calls is bounded by

O
(
(n + κbg) log

(
1

ϵ

))
.

▶ unlike SGD, SVRG converges linearly to the optimum

▶ when κ = O(n), SVRG makes only Õ(nbg) oracle calls,

while GD makes Õ(n2) calls. so SVRG reduces the number
of calls by n/bg !

37 / 48

Proof of SVRG convergence

the argument may be broken down into two lemmas. We begin
with the following one-step progress bound for outer-iteration s

Lemma (One-step lemma)

Suppose we are at iteration k of outer-iteration s. Then

Ek∥x
(s)
k+1 − x⋆∥2 ≤ ∥x (s)k − x⋆∥2 + 2η (2ηL− 1) [f (x

(s)
k)− f (x⋆)]

+ 4η2L[f (xs)− f (x⋆)]

38 / 48

Proof of One-step lemma

Ek∥x
(s)
k+1 − x⋆∥2 =

∥x (s)k − x⋆∥2 − 2η⟨∇f (xk), xk − x⋆⟩+ η2Ek∥ g(xk)∥2

≤ ∥x (s)k − x⋆∥2 − 2η (f (xk)− f (x⋆)) + η2Ek∥ g(xk)∥2

≤ ∥x (s)k − x⋆∥2 − 2η (f (xk)− f (x⋆))+

4η2L[f (x)− f (x⋆) + f (xs)− f (x⋆),]

where the first inequality uses convexity

f (xk)− f (x⋆) ≤ ⟨∇f (xk), xk − x⋆⟩

so, after rearranging

Ek∥x
(s)
k+1 − x⋆∥2 ≤ ∥x (s)k − x⋆∥2 + 2η (2ηL− 1) [f (x

(s)
k)− f (x⋆)]

+ 4η2L[f (xs)− f (x⋆)]

39 / 48

Outer iteration contraction

the next step is show to the follow contraction result for the
outer-iterations.

Lemma (Outer iteration contraction)

Suppose we are in outer iteration s. Then

E0:s−1[f (xs)]−f (x⋆) ≤
[

1

ηµ(1− 2ηL)m
+

2

1− 2ηL

]
(f (xs−1)− f (x⋆)) ,

where E0:s−1 denotes the expectation conditioned on
outer-iterations 0 through s − 1.

40 / 48

Proof of outer iteration contraction

summing the inequality in the one-step lemma from
k = 0, . . . ,m − 1,

m∑
k=1

Ek∥x
(s)
k+1 − x⋆∥2 ≤

m−1∑
k=0

∥x (s)k − x⋆∥2+

2ηm (2ηL− 1)
1

m

m−1∑
k=0

[f (x
(s)
k)− f (x⋆)] + 4mη2[f (xs−1)− f (x⋆)].

taking the expectation over all inner-iterations conditioned on
outer-iterations 0 through s − 1 + cancellation, yields

E0:s−1∥x (s)m − x⋆∥2 ≤ ∥xs−1 − x⋆∥2+
+ 2ηm (2ηL− 1) (E0:s−1 [f (xs)]− f (x⋆)) + 4mη2L[f (xs−1)− f (x⋆)].

41 / 48

Proof of outer iteration contraction

summing the inequality in the one-step lemma from
k = 0, . . . ,m − 1,

m∑
k=1

Ek∥x
(s)
k+1 − x⋆∥2 ≤

m−1∑
k=0

∥x (s)k − x⋆∥2+

2ηm (2ηL− 1)
1

m

m−1∑
k=0

[f (x
(s)
k)− f (x⋆)] + 4mη2[f (xs−1)− f (x⋆)].

taking the expectation over all inner-iterations conditioned on
outer-iterations 0 through s − 1 + cancellation, yields

E0:s−1∥x (s)m − x⋆∥2 ≤ ∥xs−1 − x⋆∥2+
+ 2ηm (2ηL− 1) (E0:s−1 [f (xs)]− f (x⋆)) + 4mη2L[f (xs−1)− f (x⋆)].

41 / 48

Proof contd.

rearranging gives

E0:s−1∥xs − x⋆∥2 + 2ηm (1− 2ηL) (E0:s−1 [f (xs)]− f (x⋆))

≤ 2

(
1

µ
+ 2mη2L

)
[f (xs−1)− f (x⋆)],

where we used strong convexity of f

∥xs−1 − x⋆∥2 ≤
2

µ
(f (xs−1)− f (x⋆))

hence (dropping E0:s−1∥xs − x⋆∥2 ≥ 0)

2ηm (1− 2ηL) (E0:s−1 [f (xs)]− f (x⋆))

≤ 2

(
1

µ
+ 2mη2L

)
[f (xs−1)− f (x⋆)],

and so the claim follows by rearrangement
42 / 48

Finishing the proof

E0:s−1[f (xs+1)]−f (x⋆) ≤
[

1

ηµ(1− 2ηL)m
+

2

1− 2ηL

]
(f (xs)− f (x⋆))

setting η = 1
10L and m = 20L

µ , we find

E0:s−1[f (xs)]− f (x⋆) ≤
1

2
(f (xs−1)− f (x⋆))

now taking expectations over all outer iterations and recursing,

E[f (xs)]− f (x⋆) ≤
(
1

2

)s

(f (x0)− f (x⋆)) ,

which gives the theorem after setting s = O (log(1/ϵ))

43 / 48

Practical questions for SVRG

Q: how to select update frequency m?
A: not obvious, as the dependence upon L/µ is loose. In
practice, use m n/bg update every 1–2 epochs
Q: how to choose step-size η?
A: monitor convergence. theoretical step-size often too small
Q: does SVRG work for non-convex problems like deep learning?
A: alas, no: variance reduction may worsen performance for
nonconvex problems!

44 / 48

Practical questions for SVRG

Q: how to select update frequency m?

A: not obvious, as the dependence upon L/µ is loose. In
practice, use m n/bg update every 1–2 epochs
Q: how to choose step-size η?
A: monitor convergence. theoretical step-size often too small
Q: does SVRG work for non-convex problems like deep learning?
A: alas, no: variance reduction may worsen performance for
nonconvex problems!

44 / 48

Practical questions for SVRG

Q: how to select update frequency m?
A: not obvious, as the dependence upon L/µ is loose. In
practice, use m n/bg update every 1–2 epochs

Q: how to choose step-size η?
A: monitor convergence. theoretical step-size often too small
Q: does SVRG work for non-convex problems like deep learning?
A: alas, no: variance reduction may worsen performance for
nonconvex problems!

44 / 48

Practical questions for SVRG

Q: how to select update frequency m?
A: not obvious, as the dependence upon L/µ is loose. In
practice, use m n/bg update every 1–2 epochs
Q: how to choose step-size η?

A: monitor convergence. theoretical step-size often too small
Q: does SVRG work for non-convex problems like deep learning?
A: alas, no: variance reduction may worsen performance for
nonconvex problems!

44 / 48

Practical questions for SVRG

Q: how to select update frequency m?
A: not obvious, as the dependence upon L/µ is loose. In
practice, use m n/bg update every 1–2 epochs
Q: how to choose step-size η?
A: monitor convergence. theoretical step-size often too small

Q: does SVRG work for non-convex problems like deep learning?
A: alas, no: variance reduction may worsen performance for
nonconvex problems!

44 / 48

Practical questions for SVRG

Q: how to select update frequency m?
A: not obvious, as the dependence upon L/µ is loose. In
practice, use m n/bg update every 1–2 epochs
Q: how to choose step-size η?
A: monitor convergence. theoretical step-size often too small
Q: does SVRG work for non-convex problems like deep learning?

A: alas, no: variance reduction may worsen performance for
nonconvex problems!

44 / 48

Practical questions for SVRG

Q: how to select update frequency m?
A: not obvious, as the dependence upon L/µ is loose. In
practice, use m n/bg update every 1–2 epochs
Q: how to choose step-size η?
A: monitor convergence. theoretical step-size often too small
Q: does SVRG work for non-convex problems like deep learning?
A: alas, no: variance reduction may worsen performance for
nonconvex problems!

44 / 48

SVRG numerical performance

▶ revisit the same logistic regression example

▶ run SVRG with step-size η = 4

▶ update snapshot every epoch

45 / 48

Results: Optimization error

0 100 200 300 400 500
Epoch

10 10

10 8

10 6

10 4

10 2

100

f t
f

GD
AGD
SGD
SVRG

46 / 48

Results: Test loss

0 100 200 300 400 500
Epoch

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

GD
AGD
SGD
SVRG

47 / 48

SVRG: Final comments

▶ variance reduction is a powerful tool for convex finite-sum
optimization, as it delivers linear convergence

▶ SVRG has motivated the development of better (usually)
variance reduced algorithms such as SAGA and Katyusha

▶ outside of finite-sum convex optimization, variance
reduction hasn’t proven to be terribly useful

48 / 48

	Stochastic optimization
	Finite sum minimization

