CME 307 / MS&E 311: Optimization

Operators

Professor Udell

Management Science and Engineering
Stanford

May 11, 2023

1/37

Announcements

2/37

Outline

Proximal method

3/37

Resolvent operator

for relation F, define the resolvent of F

RF = (14 F)™!

consider resolvent of F

> (I+F)={(x.x+y):(x,y) € F}
> Re=(I+F)1={(x+y,x): (x,y) € F}
> Re={(u,v):(u—v)eF(v)}

4/37

Prox is the resolvent of Of

» prox; = Ry = (I + Of) 1

5/37

Prox is the resolvent of Of

> prox, = Ror = (I + Of) 71
proof: let z € prox,(x),
. 1 2
z = argminf(z)+ EHZ — x|

0 of(z)+z—x
(x—2z) € 0f(z)

m

> prox; = Vh* where h(x) = f(x) + 3|/x||?

5/37

Prox is the resolvent of Of

> prox, = Ror = (I + Of) 71
proof: let z € prox,(x),
. 1 2
z = argminf(z)+ EHZ — x|

0 of(z)+z—x
(x—2z) € 0f(z)

m

> prox; = Vh* where h(x) = f(x) + 3||x||?
proof: his CCP and dh = 0f + 1, so

Vh* = (0h)™t = (1 +0f)7!

» prox; is a function

5/37

Prox is the resolvent of Of

prox; = Ros = (I + 0f) !
proof: let z € prox,(x),
. 1 2
z = argminf(z)+ EHZ — x|

0 of(z)+z—x
(x—2z) € 0f(2)

m

prox; = Vh* where h(x) = f(x) + 5|x]|?
proof: his CCP and 0h = O0f + 1, so

Vh* = (0h)™t = (1 +0f)7!

prox; is a function
proof: h is strongly convex, so h* is smooth

5/37

Outline

Reformulations

6/37

Proximal point method

fixed point iteration using prox is called proximal point method

x5+ = prox ¢ (x(9))

properties:

> prox, is 5 averaged for any A > 0, so
» converges for any A > 0

> to a zero of Of (= FPs of prox,;)

>

if f is a-strongly convex, prox, is a contraction,
so converges linearly

v

not usually a practical method (often, as hard as solving original
problem)

7/37

Method of multipliers

consider
minimize f(x)
subject to Ax=0b
let

g(p) = —(inf f(x) + p" (Ax = b)) = F*(=ATp) + u"b

be the (negative) dual function, and consider the proximal point
method for t > 0

y(kﬂ) = Rtag(y(k))

> Og(v) = —AJ(f*(—ATv)) + b
> x € J(F*(—ATv)) iff —ATv € 9f(x)
> soif v=Rug(y) = (I + tdg)*(y), then

y € v+tdg(v)
y = v—afAx—b) forsome x with —ATv e df(x)

8/37

Method of multipliers

notice x minimizes the Augmented Lagrangian L, (x, y)

0 € Of(x)+AT(y + a(Ax — b))
x € argminf(x)+yT(Ax — b) + a/2||Ax — b||® = La(x,y)

so proximal point method for g is

XD e argmin Lo (x, y)

y(k+1) - y(k) + a(Ax(k+1) —b)
also called the method of multipliers
properties:

» always converges

» if f is smooth, then g is strongly convex, R:s, is a contraction,
and the method of multipliers converges linearly

» useful if f is smooth and A is very sparse
(alternative: optimize over x € xg + (A)z; but (A) is generally
dense)

9/37

Composition rules

suppose A has Lipschitz constant L4, B has Lipschitz constant Lg
then Ao B has Lipschitz constant < Lalg

10/37

Composition rules

suppose A has Lipschitz constant L4, B has Lipschitz constant Lg
then Ao B has Lipschitz constant < Lalg

proof:

|Ao By — Ao Bx|| < La||By — Bx|| < LaLslly — x||

P nonexpansive o nonexpansive = nonexpansive

» nonexpansive o contractive = contractive

10/37

Outline

Splitting

11/37

Reductions

suppose f is smooth, g is non-smooth but proxable. solve
unconstrained problem

minimize f(x) + g(Ax)
or, rewrite as

minimize f(x) + g(y)
subject to Ax =y

12/37

Reductions

suppose f is smooth, g is non-smooth but proxable. solve
unconstrained problem

minimize f(x) + g(Ax)
or, rewrite as

minimize f(x) + g(y)
subject to Ax =y

how general is this formulation?

12/37

Two linear operators

suppose f is smooth, g is non-smooth but proxable. solve

minimize f(Bx) + g(Ax)

reformulate

13/37

Two linear operators

suppose f is smooth, g is non-smooth but proxable. solve

minimize f(Bx) + g(Ax)

reformulate:
f(Mx) is smooth whenever f is, so it's already in the right form

13/37

Two linear operators

suppose f is smooth, g is non-smooth but proxable. solve

minimize f(Bx) + g(Ax)

reformulate:
f(Mx) is smooth whenever f is, so it's already in the right form

special case: f(x)=>"", fi(x)

13/37

Many fs

suppose f; is smooth for i = 1,..., m, g is non-smooth but proxable.

solve L n
minimize > . fi(x;) + g(y)
subject to Y7 [Aixi=y

reformulate:

14 /37

Many fs

suppose f; is smooth for i = 1,..., m, g is non-smooth but proxable.

solve L n
minimize > . fi(x;) + g(y)
subject to Y7 [Aixi=y

reformulate: x = (x1,...,xm), f(x) = >I_, fi(x),
Ax=3T" Axi=y

minimize f(x) + g(y)
subject to Ax =y

14 /37

Many gs

suppose f is smooth, gj is non-smooth but proxable for i=1,... m.

solve
minimize f(x) + >, &i(yi)
subjectto A;x =y;

reformulate:

15/37

Many gs

suppose f is smooth, g; is non-smooth but proxable for i =1,...

solve
minimize f(x) + >, &i(yi)
subjectto A;x =y;

reformulate: Ax = (Aix,...,Amnx) =y, g(y) = >, 8i(y)-
g is separable so still proxable.

minimize f(x) + g(y)
subject to Ax =y

15/37

Conic problem

suppose we have a conic problem over cone K

minimize ¢’ x
subjectto Ax=0b
xeK

reformulate:

16 /37

Conic problem

suppose we have a conic problem over cone K

minimize ¢’ x
subjectto Ax=0b
xeK

reformulate:
minimize ¢’ x + Ic(y — b)
subject to Ax =y

16 /37

Conic problem

suppose we have a conic problem over cone K

minimize ¢’ x
subjectto Ax=0b
xeK

reformulate:
minimize ¢’ x + Ic(y — b)
subject to Ax =y

prox,_ =[x is projection onto cone K

16 /37

Strongly convex

suppose f is strongly convex, g is non-smooth but proxable. solve

minimize f(x) + g(y)
subject to Ax =y

reformulate:

17/37

Strongly convex

suppose f is strongly convex, g is non-smooth but proxable. solve

minimize f(x) + g(y)
subject to Ax =y

reformulate: duality!

Lix,y,u) = f(x)+g(y)+n'(Ax—y)
infL(xy,1) = —F(=ATn) —g"(n)
dual formulation:
maximize f*(—ATu) + g* (1)

notice:

> f*o(—AT) smooth

> if g=>"",gi(y) is separable, so is

g* (1) = supy, 3, (niyi — &i(¥i))

17/37

Outline

18/37

Forward backward splitting

suppose F is %-cocoercive and G is maximal monotone

(eg, F = Vf and G = 0Jg)

find

X

subject to 0 € Fx + Gx

analyze optimality conditions:

0 €
—tFx €
(I —tF)x €
x =

X =

Fx 4+ Gx

tGx

(I + tG)x

(r+ th)_l(/ — tF)x
Ric(l — tF)x

19/37

Forward backward splitting

xT = Rig(I — tF)x

convergence:
> Ricis %—averaged
> for t € (0, %) | — tB is averaged

» so FBS converges
» if either F or G is strongly monotone, then FBS converges linearly

20/37

Proximal gradient

suppose f is smooth, g is non-smooth but proxable.
then Vf is %—cocoercive and Og is maximal monotone.

FBS for these operators is called proximal gradient method
xT = prox, (x — tVf(x))
solves unconstrained problem
minimize f(x) + g(x)

convergence:

2
> for t € (0, 3), converges

» if either f or g is strongly convex, then proximal gradient
converges linearly

special case: projected gradient

21/37

Proximal gradient: interpretation
consider update that linearizes f and regularizes around x(¥)
1
x5 e argmin £(x) + VF(xK)T (x — xR + —t||x — x(h2

+8(x)
0 € VAR 4 xtHD) — 4K 4 gg(xkD)
(k) _ Vf(x(k)) x(k+1) 4 ag(x(k+1))
sk proxtg(x(k) o tVf(x(")))

m

we see proximal gradient update solves

minimize g + quadratic approximation to f

22/37

Proximal gradient: interpretation

consider update that linearizes f and regularizes around x(¥)

1
xHD) e argmin £(x0) + VF(xE) T (x — x0) + 7||x -

+8(x)
0 € VAR 4 xtHD) — 4K 4 gg(xkD)
(k) _ Vf(x(k)) x(k+1) 4 ag(x(k+1))
sk proxtg(x(k) o tVf(x(")))

m

we see proximal gradient update solves

minimize g + quadratic approximation to f

variable metric:

> regularize with ||x — x(K)||? instead of X — x)|2
» reduces to standard proximal gradient when L = %I

» converges so long as f is 1-smooth wrt the metric L

22/37

Proximal gradient method and composition

suppose f is smooth and g is proxable
» easy to apply proximal gradient method to
minimize f(Ax) + g(x),
since V(f(Ax)) = AT(Vf)(Ax)
» hard to apply proximal gradient method to
minimize f(x) + g(Ax),

since

> prox,,, may not be easy to evaluate even if prox, is easy
> prox,,, may not be separable even if g is separable

23/37

Proximal gradient method and composition

suppose f is smooth and g is proxable
» easy to apply proximal gradient method to
minimize f(Ax) + g(x),
since V(f(Ax)) = AT(Vf)(Ax)
» hard to apply proximal gradient method to
minimize f(x) + g(Ax),

since

> prox,,, may not be easy to evaluate even if prox, is easy
> prox,,, may not be separable even if g is separable

what should we do instead?

23/37

Can’t we just compute A~1?

let y = Ax, can't we just use proximal gradient to solve
minimize f(A™ly) + g(y)?

why not?

24 /37

Can’t we just compute A~1?

let y = Ax, can't we just use proximal gradient to solve
minimize f(A™ly) + g(y)?

why not?

» A may not be invertible
» even if A is invertible, inverting it is numerically unstable

> if A is sparse with s nonzeros, applying A and A7 take O(s)
flops, while inverting A takes O(n®) flops

24 /37

can we use conjugate gradient?

how about using conjugate gradient instead of forming A=1?

to compute
y* = prox, (y — tA"T(VF)(A™1y)),
do
» solve Ax =y for x
> solve ATg = Vf(x) for g
> update y* = prox,,(y — tg)

25 /37

can we use conjugate gradient?

how about using conjugate gradient instead of forming A=1?

to compute
yt = prox,(y — tA"T(VF)(A™1y)),

do

» solve Ax =y for x
> solve ATg = Vf(x) for g
> update y* = prox,,(y — tg)

problem: what if y™ ¢ range(A)?

25 /37

Dual proximal gradient method

suppose f is strongly convex and g is proxable. instead of
minimize f(x) + g(Ax),
consider its dual problem

minimize f*(—A"p) + g* (1)

proximal gradient on the dual is
p*F = prox,,. (I — AVF*)(—AT k)

much easier: only need to multiply by A and A7

26 /37

Dual proximal gradient method: convergence

sublinear convergence rate if both operators are nonexpansive:

» f is a-strongly convex :> f*is f-smooth
= V(f*o—-AT)is TAT[? Cocoercive == V(f*o—AT)is
T2
”A I Lipschitz

> gis CCP = g" is CCP = prox,. is nonexpansive
so get sublinear convergence if t € (0, ”jﬁ)

linear convergence if in addition either operator is contractive:

» gradient update is contractive f* strongly convex,
which happens if f S-smooth and A is surjective

» prox update is contractive if g* is strongly convex
which happens if g is smooth

27 /37

Dual proximal gradient method: challenges

two challenges

» how to recover primal solution from dual solution?

> how to compute prox,,.?

(we've already seen y € V*(x) iff x € 9f(y))

28/37

Dual proximal gradient method: recover primal

how to recover primal solution from dual solution?

29/37

Dual proximal gradient method: recover primal

how to recover primal solution from dual solution?

if u* is dual optimal for minimize f(x) + g(Ax),
then KKT conditions = x* primal optimal iff

x* € argininf(x)+g(y)+(u*)T(AX_y)

0 € Iof(x*)+ATu*
e () H(-ATWY)
x* € VFf(=ATu")

recovers primal solution

29/37

Moreau’s identity

Moreau’s identity:
prox, + prox,. =/

30/37

Moreau’s identity

Moreau’s identity:
prox, + prox,. =/

proof: let z = prox,(x). then

prox,(x) = (I +0f)'x = z
x e (I+0f)2)
x—z € 0f(2)
off(x—z) > z
(I+0f)x—2) 2 x—z+z=x

X—z (/+8f*)_1x:proxz,(x)
SO Prox,(x) + prox,.(x) =z +x —z = x
» scale g by t to compute

Z = prox,(z) + prox). (z) = prox,,(z) + tprox, 1,.(t'z)

30/37

Dual proximal gradient method: compute prox,,.

dual proximal gradient method

x = VFf(=ATp)

pt o= prox,.(u+ tAx)

how to compute prox,,. (u + tAx)?

31/37

Dual proximal gradient method: compute prox,,.

dual proximal gradient method

x = VFf(=ATp)

pt o= prox,.(u+ tAx)

how to compute prox,,. (u + tAx)?

use Moreau's identity with tz = u + tAx:
ProX.,.(tz) = tz — prox, ;.,(z)

dual proximal gradient method becomes

x = VFf(=ATp)
pt = At tAX — proxy s (u/t + Ax)

31/37

Dual proximal gradient method: interpretation

dual proximal gradient method
x = VFf(=ATp)
pt = e tAx = proxy e (u/t + Ax)

> state V*(—AT) explicitly:
VF*(—=AT i) = argmax(—AT p) "x — f(x) = argmin f(x) + " Ax

> state proxy ;. (1/t + Ax) explicitly:
. t
prox, i (11/t + Ax) = argming(y) + 5 |ly — Ax — pu/t[|”
y
dual proximal gradient method becomes
x = argminf(x)+ pu’ Ax

. t

y = argming(y)+ Sy — Ax— p/t]?

y

o= ptt(Ax—y)

32/37

Many more splitting methods

Peaceman Rachford Splitting
Douglas Rachford Splitting

Davis Yin Three Operator Splitting
Chambolle Pock

» ADMM

vvyyvyy

details in Ryu and Boyd monograph

33/37

Chambolle Pock

consider the problem

minimize f(x) + g(Ax)

Chambolle Pock iteration is

KD R () AT (00

plkt) = Riog- () + tA@2xE+D) — x(K)y)

> converges when t < IT}\H
» easy whenever f and g are proxable

» only requires multiplication by A and AT

34/37

Distributed optimization

consider the problem

minimize Y7 fi(x;) + Z};l gi(yj)
subject to Ax =y

Chambolle Pock iteration is a distributed optimization method! define

N() = Ay #0} N() ={i: Aj #0}

CP iteration is
» for each i, compute
x’.(k“) = proxg(—t Z AUu
JEN(i)
» for each j, compute
(k+1)

pj = prox, (u +tz i(
ieN ()

k+1)

1)

35/37

ADMM

consider the problem
minimize f(x) + g(z)
subjectto Ax+ Bz=c¢
Augmented Lagrangian for this problem (with dual variable y) is
Li(x,2,y) = F(x) + g(2) + y T (Ax + Bz —) + t/2]| Ax + Bz — c|]

Alternating Directions Method of Multipliers (ADMM) iteration is

X(k+1) = argmin Lt(X7Z(k)7.y(k))
Z(k+1) = argmin Lt(X(k+1)7 Z, y(k))
1
ytD = 4 Z(Ax(k“) + Bz —¢)

(special case of Douglas Rachford splitting)

36/37

ADMM

properties:

> converges for any t > 0 (but can be very slow)

» letting y = tu, equivalent to the iteration

x(k+1) argmin f(x) + t/2||Ax + BzK) — ¢ 4 4|2
25D = argmin g(z) + t/2||AxTY 4 Bz — ¢ +)2
u D) =) Ax (kL) 4 o (k+1)

» frequently used for distributed optimization:
problems decouple if A or B is diagonal

(note this is more restrictive requirement for distributed opt
compared to Chambolle Pock)

37/37

Operator splitting for distributed optimization

economy with m agents and n goods.

| 2

vVVvyYvyy

agent i has consumption vector x; € R"

agent i produces (x;); of good j if (x;); >0
agent i consumes —(x;); of good j if (x;); <0
agent i has utility function f;(x;)

supply = demand if >, x; = 0.

the economy solves the problem

minimize >+ fi(x;)
subjectto >, x; =0

38/37

References

» Parikh and Boyd, Proximal Algorithms
» Ryu and Boyd, Primer on Monotone Operator Methods

» Davis and Yin, Convergence Rate Analysis of Several Splitting
Schemes

» Pontus Gisselson, Course on Large-Scale Convex Optimization
http://www.control.lth.se/ls-convex-2015/

39/37

http://www.control.lth.se/ls-convex-2015/

	Proximal method
	Reformulations
	Splitting

