# CME 307 / MS&E 311: Optimization

# **Operators**

Professor Udell

Management Science and Engineering Stanford

May 11, 2023

#### **Announcements**

#### **Outline**

Proximal method

Reformulations

Splitting

#### **Resolvent operator**

for relation F, define the **resolvent** of F

$$R_F = (I + F)^{-1}$$

consider resolvent of F

- $I = \{(x, x + y) : (x, y) \in F\}$
- $P_F = (I+F)^{-1} = \{(x+y,x) : (x,y) \in F\}$
- ►  $R_F = \{(u, v) : (u v) \in F(v)\}$

▶  $\operatorname{prox}_f = R_{\partial f} = (I + \partial f)^{-1}$  $\operatorname{proof:} \operatorname{let} z \in \operatorname{prox}_f(x),$ 

$$z = \underset{z}{\operatorname{argmin}} f(z) + \frac{1}{2} ||z - x||^{2}$$
$$0 \in \partial f(z) + z - x$$
$$(x - z) \in \partial f(z)$$

**prox**<sub>f</sub> =  $\nabla h^*$  where  $h(x) = f(x) + \frac{1}{2}||x||^2$ 

▶  $\operatorname{prox}_f = R_{\partial f} = (I + \partial f)^{-1}$  $\operatorname{proof:} \operatorname{let} z \in \operatorname{prox}_f(x),$ 

$$z = \underset{z}{\operatorname{argmin}} f(z) + \frac{1}{2} ||z - x||^{2}$$
$$0 \in \partial f(z) + z - x$$
$$(x - z) \in \partial f(z)$$

▶  $\mathbf{prox}_f = \nabla h^*$  where  $h(x) = f(x) + \frac{1}{2} ||x||^2$  $\mathbf{proof:}\ h \text{ is CCP and } \partial h = \partial f + I, \text{ so}$ 

$$\nabla h^* = (\partial h)^{-1} = (I + \partial f)^{-1}$$

ightharpoonup prox<sub>f</sub> is a function

▶  $\operatorname{prox}_f = R_{\partial f} = (I + \partial f)^{-1}$  $\operatorname{proof:} \operatorname{let} z \in \operatorname{prox}_f(x),$ 

$$z = \underset{z}{\operatorname{argmin}} f(z) + \frac{1}{2} ||z - x||^{2}$$
$$0 \in \partial f(z) + z - x$$
$$(x - z) \in \partial f(z)$$

▶  $\mathbf{prox}_f = \nabla h^*$  where  $h(x) = f(x) + \frac{1}{2}||x||^2$  $\mathbf{proof:}\ h \text{ is CCP and } \partial h = \partial f + I, \text{ so}$ 

$$\nabla h^* = (\partial h)^{-1} = (I + \partial f)^{-1}$$

prox<sub>f</sub> is a function proof: h is strongly convex, so h\* is smooth

#### **Outline**

Proximal method

Reformulations

Splitting

## Proximal point method

fixed point iteration using prox is called proximal point method

$$x^{(k+1)} = \mathsf{prox}_{tf}(x^{(k)})$$

#### properties:

- **prox**<sub>tf</sub> is  $\frac{1}{2}$  averaged for any  $\lambda > 0$ , so
- ightharpoonup converges for any  $\lambda > 0$
- ▶ to a zero of  $\partial f$  (= FPs of **prox**<sub> $\lambda f$ </sub>)
- ▶ if f is  $\alpha$ -strongly convex,  $\mathbf{prox}_{\lambda f}$  is a contraction, so converges linearly
- not usually a practical method (often, as hard as solving original problem)

#### Method of multipliers

consider

minimize 
$$f(x)$$
 subject to  $Ax = b$ 

let

$$g(\mu) = -(\inf_{x} f(x) + \mu^{T}(Ax - b)) = f^{*}(-A^{T}\mu) + \mu^{T}b$$

be the (negative) dual function, and consider the proximal point method for t>0

$$y^{(k+1)} = R_{t\partial g}(y^{(k)})$$

- $x \in \partial (f^*(-A^T v)) \text{ iff } -A^T v \in \partial f(x)$
- ightharpoonup so if  $v=R_{t\partial g}(y)=(I+t\partial g)^{-1}(y)$ , then

$$y \in v + t\partial g(v)$$
  
 $y = v - \alpha(Ax - b)$  for some  $x$  with  $-A^T v \in \partial f(x)$ 

#### Method of multipliers

notice x minimizes the **Augmented Lagrangian**  $L_{\alpha}(x,y)$ 

$$0 \in \partial f(x) + A^{T}(y + \alpha(Ax - b))$$
  
 
$$x \in \underset{x}{\operatorname{argmin}} f(x) + y^{T}(Ax - b) + \alpha/2 ||Ax - b||^{2} = L_{\alpha}(x, y)$$

so proximal point method for g is

$$x^{(k+1)} \in \underset{x}{\operatorname{argmin}} L_{\alpha}(x, y^{(k)})$$
  
 $y^{(k+1)} = y^{(k)} + \alpha(Ax^{(k+1)} - b)$ 

also called the **method of multipliers** properties:

- always converges
- ▶ if f is smooth, then g is strongly convex,  $R_{t\partial g}$  is a contraction, and the method of multipliers converges linearly
- ▶ useful if f is smooth and A is very sparse (alternative: optimize over  $x \in x_0 + (A)z$ ; but (A) is generally dense)

# **Composition rules**

suppose A has Lipschitz constant  $L_A$ , B has Lipschitz constant  $L_B$  then  $A \circ B$  has Lipschitz constant  $\leq L_A L_B$ 

## **Composition rules**

suppose A has Lipschitz constant  $L_A$ , B has Lipschitz constant  $L_B$  then  $A \circ B$  has Lipschitz constant  $\leq L_A L_B$ 

#### proof:

$$||A \circ By - A \circ Bx|| \le L_A ||By - Bx|| \le L_A L_B ||y - x||$$

- ▶ nonexpansive ∘ nonexpansive = nonexpansive
- ▶ nonexpansive ∘ contractive = contractive

#### **Outline**

Proximal method

Reformulations

Splitting

#### Reductions

suppose f is smooth, g is non-smooth but proxable. solve unconstrained problem

minimize 
$$f(x) + g(Ax)$$

or, rewrite as

minimize 
$$f(x) + g(y)$$
  
subject to  $Ax = y$ 

#### Reductions

suppose f is smooth, g is non-smooth but proxable. solve unconstrained problem

minimize 
$$f(x) + g(Ax)$$

or, rewrite as

minimize 
$$f(x) + g(y)$$
  
subject to  $Ax = y$ 

how general is this formulation?

# Two linear operators

suppose f is smooth, g is non-smooth but proxable. solve  $minimize \quad f(Bx) + g(Ax)$ 

reformulate

## Two linear operators

suppose f is smooth, g is non-smooth but proxable. solve

minimize 
$$f(Bx) + g(Ax)$$

reformulate:

f(Mx) is smooth whenever f is, so it's already in the right form

## Two linear operators

suppose f is smooth, g is non-smooth but proxable. solve minimize f(Bx) + g(Ax)

reformulate:

f(Mx) is smooth whenever f is, so it's already in the right form

special case: 
$$f(x) = \sum_{i=1}^{m} f_i(x)$$

# Many fs

suppose  $f_i$  is smooth for  $i=1,\ldots,m,\,g$  is non-smooth but proxable. solve

minimize 
$$\sum_{i=1}^{n} f_i(x_i) + g(y)$$
  
subject to  $\sum_{i=1}^{n} A_i x_i = y$ 

reformulate:

# Many fs

suppose  $f_i$  is smooth for  $i=1,\ldots,m,g$  is non-smooth but proxable. solve

minimize 
$$\sum_{i=1}^{n} f_i(x_i) + g(y)$$
  
subject to  $\sum_{i=1}^{n} A_i x_i = y$ 

reformulate: 
$$x = (x_1, \dots, x_m)$$
,  $f(x) = \sum_{i=1}^n f_i(x_i)$ ,  $Ax = \sum_{i=1}^n A_i x_i = y$ .

minimize  $f(x) + g(y)$  subject to  $Ax = y$ 

# Many gs

suppose f is smooth,  $g_i$  is non-smooth but proxable for  $i=1,\ldots,m$ . solve

minimize 
$$f(x) + \sum_{i=1}^{m} g_i(y_i)$$
  
subject to  $A_i x = y_i$ 

reformulate:

# Many gs

suppose f is smooth,  $g_i$  is non-smooth but proxable for  $i=1,\ldots,m$ . solve

minimize 
$$f(x) + \sum_{i=1}^{m} g_i(y_i)$$
  
subject to  $A_i x = y_i$ 

reformulate: 
$$Ax = (A_1x, ..., A_mx) = y$$
,  $g(y) = \sum_{i=1}^m g_i(y_i)$ .  $g$  is separable so still proxable.

minimize 
$$f(x) + g(y)$$
  
subject to  $Ax = y$ 

# **Conic problem**

suppose we have a conic problem over cone K

minimize 
$$c^T x$$
  
subject to  $Ax = b$   
 $x \in \mathcal{K}$ 

reformulate:

## **Conic problem**

suppose we have a conic problem over cone K

minimize 
$$c^T x$$
  
subject to  $Ax = b$   
 $x \in \mathcal{K}$ 

reformulate:

minimize 
$$c^T x + I_K (y - b)$$
  
subject to  $Ax = y$ 

#### **Conic problem**

suppose we have a conic problem over cone K

minimize 
$$c^T x$$
  
subject to  $Ax = b$   
 $x \in \mathcal{K}$ 

reformulate:

minimize 
$$c^T x + I_K(y - b)$$
  
subject to  $Ax = y$ 

 $\mathbf{prox}_{I_{\mathcal{K}}} = \Pi_{\mathcal{K}}$  is projection onto cone  $\mathcal{K}$ 

# **Strongly convex**

suppose f is strongly convex, g is non-smooth but proxable. solve

minimize 
$$f(x) + g(y)$$
  
subject to  $Ax = y$ 

reformulate:

# Strongly convex

suppose f is strongly convex, g is non-smooth but proxable. solve

minimize 
$$f(x) + g(y)$$
  
subject to  $Ax = y$ 

reformulate: duality!

$$L(x, y, \mu) = f(x) + g(y) + \mu^{T}(Ax - y)$$
  

$$\inf_{x,y} L(x, y, \mu) = -f^{*}(-A^{T}\mu) - g^{*}(\mu)$$

dual formulation:

maximize 
$$f^*(-A^T\mu) + g^*(\mu)$$

notice:

$$ightharpoonup f^* \circ (-A^T)$$
 smooth

• if 
$$g = \sum_{i=1}^{m} g_i(y_i)$$
 is separable, so is  $g^*(\mu) = \sup_{y} \sum_{i=1}^{m} (\mu_i y_i - g_i(y_i))$ 

#### **Outline**

Proximal method

Reformulations

Splitting

## Forward backward splitting

suppose F is  $\frac{1}{\beta}$ -cocoercive and G is maximal monotone (eg,  $F=\nabla f$  and  $G=\partial g$ )

find 
$$x$$
 subject to  $0 \in Fx + Gx$ 

analyze optimality conditions:

$$0 \in Fx + Gx$$

$$-tFx \in tGx$$

$$(I - tF)x \in (I + tG)x$$

$$x = (I + tGx)^{-1}(I - tF)x$$

$$x = R_{tG}(I - tF)x$$

# Forward backward splitting

$$x^+ = R_{tG}(I - tF)x$$

#### convergence:

- $ightharpoonup R_{tG}$  is  $\frac{1}{2}$ -averaged
- for  $t \in (0, \frac{2}{\beta})$ , I tB is averaged
- so FBS converges
- ▶ if either *F* or *G* is strongly monotone, then FBS converges linearly

## **Proximal gradient**

suppose f is smooth, g is non-smooth but proxable. then  $\nabla f$  is  $\frac{1}{\beta}$ -cocoercive and  $\partial g$  is maximal monotone.

FBS for these operators is called proximal gradient method

$$x^+ = \mathbf{prox}_{tg}(x - t\nabla f(x))$$

solves unconstrained problem

minimize 
$$f(x) + g(x)$$

#### convergence:

- ▶ for  $t \in (0, \frac{2}{\beta})$ , converges
- ▶ if either f or g is strongly convex, then proximal gradient converges linearly

special case: projected gradient

# **Proximal gradient: interpretation**

consider update that linearizes f and regularizes around  $x^{(k)}$ 

$$x^{(k+1)} \in \underset{x}{\operatorname{argmin}} f(x^{(k)}) + \nabla f(x^{(k)})^{T} (x - x^{(k)}) + \frac{1}{2t} \|x - x^{(k)}\|^{2} + g(x)$$

$$0 \in \nabla f(x^{(k)}) + x^{(k+1)} - x^{(k)} + \partial g(x^{(k+1)})$$

$$x^{(k)} - \nabla f(x^{(k)}) \in x^{(k+1)} + \partial g(x^{(k+1)})$$

$$x^{(k+1)} = \operatorname{prox}_{tr}(x^{(k)} - t\nabla f(x^{(k)}))$$

we see proximal gradient update solves

minimize g + quadratic approximation to f

# **Proximal gradient: interpretation**

consider update that linearizes f and regularizes around  $x^{(k)}$ 

$$x^{(k+1)} \in \underset{x}{\operatorname{argmin}} f(x^{(k)}) + \nabla f(x^{(k)})^{T} (x - x^{(k)}) + \frac{1}{2t} \|x - x^{(k)}\|^{2} + g(x)$$

$$0 \in \nabla f(x^{(k)}) + x^{(k+1)} - x^{(k)} + \partial g(x^{(k+1)})$$

$$x^{(k)} - \nabla f(x^{(k)}) \in x^{(k+1)} + \partial g(x^{(k+1)})$$

$$x^{(k+1)} = \operatorname{prox}_{tg}(x^{(k)} - t\nabla f(x^{(k)}))$$

we see proximal gradient update solves

minimize 
$$g$$
 + quadratic approximation to  $f$ 

variable metric:

- regularize with  $||x-x^{(k)}||_L^2$  instead of  $\frac{1}{2t}||x-x^{(k)}||^2$
- reduces to standard proximal gradient when  $L = \frac{1}{t}I$
- converges so long as f is 1-smooth wrt the metric L

# Proximal gradient method and composition

#### suppose f is smooth and g is proxable

▶ easy to apply proximal gradient method to

minimize 
$$f(Ax) + g(x)$$
,

since 
$$\nabla(f(Ax)) = A^T(\nabla f)(Ax)$$

hard to apply proximal gradient method to

minimize 
$$f(x) + g(Ax)$$
,

#### since

- **prox**<sub> $g \circ A$ </sub> may not be easy to evaluate even if **prox**<sub>g</sub> is easy
- **prox**<sub> $g \circ A$ </sub> may not be separable even if g is separable

### Proximal gradient method and composition

#### suppose f is smooth and g is proxable

▶ easy to apply proximal gradient method to

minimize 
$$f(Ax) + g(x)$$
,

since 
$$\nabla(f(Ax)) = A^T(\nabla f)(Ax)$$

hard to apply proximal gradient method to

minimize 
$$f(x) + g(Ax)$$
,

#### since

- **prox**<sub> $g \circ A$ </sub> may not be easy to evaluate even if **prox**<sub>g</sub> is easy
- **prox**<sub> $g \circ A$ </sub> may not be separable even if g is separable

what should we do instead?

## Can't we just compute $A^{-1}$ ?

let 
$$y = Ax$$
, can't we just use proximal gradient to solve minimize  $f(A^{-1}y) + g(y)$ ?

why not?

## Can't we just compute $A^{-1}$ ?

let y = Ax, can't we just use proximal gradient to solve

minimize 
$$f(A^{-1}y) + g(y)$$
?

why not?

- ► A may not be invertible
- even if A is invertible, inverting it is numerically unstable
- ▶ if A is sparse with s nonzeros, applying A and  $A^T$  take O(s) flops, while inverting A takes  $O(n^3)$  flops

### can we use conjugate gradient?

how about using conjugate gradient instead of forming  $A^{-1}$ ?

to compute

$$y^{+} = \mathbf{prox}_{tg}(y - tA^{-T}(\nabla f)(A^{-1}y)),$$

do

- ightharpoonup solve Ax = y for x
- ightharpoonup solve  $A^Tg = \nabla f(x)$  for g
- update  $y^+ = \mathbf{prox}_{tg}(y tg)$

### can we use conjugate gradient?

how about using conjugate gradient instead of forming  $A^{-1}$ ?

to compute

$$y^{+} = \mathbf{prox}_{tg}(y - tA^{-T}(\nabla f)(A^{-1}y)),$$

do

- ightharpoonup solve Ax = y for x
- ▶ solve  $A^T g = \nabla f(x)$  for g
- update  $y^+ = \mathbf{prox}_{tg}(y tg)$

problem: what if  $y^+ \notin \text{range}(A)$ ?

### **Dual proximal gradient method**

suppose f is strongly convex and g is proxable. instead of

minimize 
$$f(x) + g(Ax)$$
,

consider its dual problem

minimize 
$$f^*(-A^T\mu) + g^*(\mu)$$

proximal gradient on the dual is

$$\mu^{(k+1)} = \mathbf{prox}_{tg^*} (I - A \nabla f^*) (-A^T \mu^{(k)})$$

much easier: only need to multiply by A and  $A^T$ 

### Dual proximal gradient method: convergence

sublinear convergence rate if both operators are nonexpansive:

- ▶ f is  $\alpha$ -strongly convex  $\Longrightarrow f^*$  is  $\frac{1}{\alpha}$ -smooth  $\Longrightarrow \nabla(f^* \circ -A^T)$  is  $\frac{\alpha}{\|A^T\|^2}$  cocoercive  $\Longrightarrow \nabla(f^* \circ -A^T)$  is  $\frac{\|A^T\|^2}{\alpha}$  Lipschitz
- ightharpoonup g is CCP  $\Longrightarrow$   $g^*$  is CCP  $\Longrightarrow$   $\operatorname{prox}_{g^*}$  is nonexpansive

so get sublinear convergence if  $t \in (0, \frac{2\alpha}{\|A^T\|^2})$ 

linear convergence if in addition either operator is contractive:

- ▶ gradient update is contractive  $f^*$  strongly convex, which happens if f  $\beta$ -smooth and A is surjective
- prox update is contractive if g\* is strongly convex which happens if g is smooth

## Dual proximal gradient method: challenges

#### two challenges

- how to recover primal solution from dual solution?
- ▶ how to compute  $prox_{te^*}$ ?

(we've already seen  $y \in \nabla f^*(x)$  iff  $x \in \partial f(y)$ )

# Dual proximal gradient method: recover primal

how to recover primal solution from dual solution?

### Dual proximal gradient method: recover primal

how to recover primal solution from dual solution?

if 
$$\mu^{\star}$$
 is dual optimal for minimize  $f(x) + g(Ax)$ , then KKT conditions  $\implies x^{\star}$  primal optimal iff 
$$x^{\star} \in \operatorname*{argmin}_{x} f(x) + g(y) + (\mu^{\star})^{T} (Ax - y)$$
 
$$0 \in \partial f(x^{\star}) + A^{T} \mu^{\star}$$
 
$$x^{\star} \in (\partial f)^{-1} (-A^{T} \mu^{\star})$$
 
$$x^{\star} \in \nabla f^{*} (-A^{T} \mu^{\star})$$

recovers primal solution

## Moreau's identity

### Moreau's identity:

$$\mathsf{prox}_g + \mathsf{prox}_{g^*} = \mathit{I}$$

## Moreau's identity

#### Moreau's identity:

$$\mathsf{prox}_g + \mathsf{prox}_{g^*} = I$$

**proof:** let  $z = \mathbf{prox}_{\sigma}(x)$ . then

$$\begin{aligned} \mathbf{prox}_g(x) &= (I + \partial f)^{-1} x &= z \\ x &\in (I + \partial f)(z) \\ x - z &\in \partial f(z) \\ \partial f^*(x - z) &\ni z \\ (I + \partial f^*)(x - z) &\ni x - z + z = x \\ x - z &= (I + \partial f^*)^{-1} x = \mathbf{prox}_g^*(x) \end{aligned}$$

so 
$$\operatorname{prox}_g(x) + \operatorname{prox}_{g^*}(x) = z + x - z = x$$

scale g by t to compute

$$z = \operatorname{prox}_{tg}(z) + \operatorname{prox}_{(tg)^*}(z) = \operatorname{prox}_{tg}(z) + t\operatorname{prox}_{t^{-1}g^*}(t^{-1}z)$$

# Dual proximal gradient method: compute $prox_{tg^*}$

dual proximal gradient method

$$x = \nabla f^*(-A^T \mu)$$
  
$$\mu^+ = \mathbf{prox}_{tg^*}(\mu + tAx)$$

how to compute  $\mathbf{prox}_{tg^*}(\mu + tAx)$ ?

# Dual proximal gradient method: compute $prox_{tg^*}$

dual proximal gradient method

$$x = \nabla f^*(-A^T \mu)$$
  
$$\mu^+ = \mathbf{prox}_{te^*}(\mu + tAx)$$

how to compute  $\mathbf{prox}_{tx^*}(\mu + tAx)$ ?

use Moreau's identity with  $tz = \mu + tAx$ :

$$\mathsf{prox}_{tg^*}(tz) = tz - \mathsf{prox}_{1/tg}(z)$$

dual proximal gradient method becomes

$$x = \nabla f^*(-A^T \mu)$$
  
$$\mu^+ = \mu + tAx - \mathbf{prox}_{1/tg}(\mu/t + Ax)$$

### Dual proximal gradient method: interpretation

dual proximal gradient method

$$x = \nabla f^*(-A^T \mu)$$
  
$$\mu^+ = \mu + tAx - \mathbf{prox}_{1/te}(\mu/t + Ax)$$

▶ state  $\nabla f^*(-A^T\mu)$  explicitly:

$$\nabla f^*(-A^T \mu) = \underset{x}{\operatorname{argmax}} (-A^T \mu)^T x - f(x) = \underset{x}{\operatorname{argmin}} f(x) + \mu^T A x$$

▶ state  $\mathbf{prox}_{1/tg}(\mu/t + Ax)$  explicitly:

$$\operatorname{prox}_{1/tg}(\mu/t + Ax) = \operatorname*{argmin}_{y} g(y) + \frac{t}{2} \|y - Ax - \mu/t\|^{2}$$

dual proximal gradient method becomes

$$x = \underset{x}{\operatorname{argmin}} f(x) + \mu^{T} A x$$

$$y = \underset{y}{\operatorname{argmin}} g(y) + \frac{t}{2} ||y - Ax - \mu/t||^{2}$$

$$\mu^{+} = \mu + t(Ax - y)$$

## Many more splitting methods

- ► Peaceman Rachford Splitting
- Douglas Rachford Splitting
- Davis Yin Three Operator Splitting
- Chambolle Pock
- ADMM

details in Ryu and Boyd monograph

#### **Chambolle Pock**

consider the problem

minimize 
$$f(x) + g(Ax)$$

Chambolle Pock iteration is

$$x^{(k+1)} = R_{t\partial f}(x^{(k)} - tA^T \mu^{(k)})$$
  
$$\mu^{(k+1)} = R_{t\partial g^*}(\mu^{(k)} + tA(2x^{(k+1)} - x^{(k)}))$$

- ▶ converges when  $t < \frac{1}{\|A\|}$
- easy whenever f and g are proxable
- $\triangleright$  only requires multiplication by A and  $A^T$

### **Distributed optimization**

consider the problem

minimize 
$$\sum_{i=1}^{n} f_i(x_i) + \sum_{j=1}^{n} g_j(y_j)$$
 subject to  $Ax = y$ 

Chambolle Pock iteration is a distributed optimization method! define

$$\mathcal{N}(i) = \{j : A_{ij} \neq 0\} \quad \mathcal{N}(j) = \{i : A_{ij} \neq 0\}$$

CP iteration is

▶ for each *i*, compute

$$x_i^{(k+1)} = \mathbf{prox}_{f_i} (x_i^{(k)} - t \sum_{j \in \mathcal{N}(i)} A_{ij} u_j^{(k)})$$

▶ for each j, compute

$$\mu_j^{(k+1)} = \mathbf{prox}_{\mathcal{B}_j^*} (\mu_j^{(k)} + t \sum_{i \in \mathcal{N}(j)} A_{ij} (2x_i^{(k+1)} - x_i^{(k)}))$$

#### **ADMM**

consider the problem

minimize 
$$f(x) + g(z)$$
  
subject to  $Ax + Bz = c$ 

Augmented Lagrangian for this problem (with dual variable y) is

$$L_t(x, z, y) = f(x) + g(z) + y^T(Ax + Bz - c) + t/2||Ax + Bz - c||^2$$

Alternating Directions Method of Multipliers (ADMM) iteration is

$$\begin{array}{lll} x^{(k+1)} & = & \displaystyle \mathop{\rm argmin}_{x} L_t(x,z^{(k)},y^{(k)}) \\ z^{(k+1)} & = & \displaystyle \mathop{\rm argmin}_{z} L_t(x^{(k+1)},z,y^{(k)}) \\ y^{(k+1)} & = & \displaystyle y^{(k)} + \frac{1}{t} (Ax^{(k+1)} + Bz^{(k+1)} - c) \end{array}$$

(special case of Douglas Rachford splitting)

#### **ADMM**

#### properties:

- ightharpoonup converges for any t > 0 (but can be very slow)
- letting y = tu, equivalent to the iteration

$$x^{(k+1)} = \underset{x}{\operatorname{argmin}} f(x) + t/2 ||Ax + Bz^{(k)} - c + u^{(k)}||^{2}$$

$$z^{(k+1)} = \underset{z}{\operatorname{argmin}} g(z) + t/2 ||Ax^{(k+1)} + Bz - c + u^{(k)}||^{2}$$

$$u^{(k+1)} = u^{(k)} + Ax^{(k+1)} + Bz^{(k+1)} - c$$

▶ frequently used for distributed optimization: problems decouple if A or B is diagonal (note this is more restrictive requirement for distributed opt compared to Chambolle Pock)

## Operator splitting for distributed optimization

economy with m agents and n goods.

- ▶ agent *i* has consumption vector  $x_i \in \mathbf{R}^n$
- ▶ agent *i* produces  $(x_i)_i$  of good *j* if  $(x_i)_i > 0$
- ▶ agent *i* consumes  $-(x_i)_j$  of good *j* if  $(x_i)_j < 0$
- ▶ agent *i* has utility function  $f_i(x_i)$
- ▶ supply = demand if  $\sum_i x_i = 0$ .

the economy solves the problem

minimize 
$$\sum_{i=1}^{n} f_i(x_i)$$
  
subject to  $\sum_{i=1}^{n} x_i = 0$ 

#### References

- Parikh and Boyd, Proximal Algorithms
- Ryu and Boyd, Primer on Monotone Operator Methods
- Davis and Yin, Convergence Rate Analysis of Several Splitting Schemes
- Pontus Gisselson, Course on Large-Scale Convex Optimization http://www.control.lth.se/ls-convex-2015/