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Resolvent operator

for relation F , define the resolvent of F

RF = (I + F )−1

consider resolvent of F

▶ (I + F ) = {(x , x + y) : (x , y) ∈ F}
▶ RF = (I + F )−1 = {(x + y , x) : (x , y) ∈ F}
▶ RF = {(u, v) : (u − v) ∈ F (v)}
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Prox is the resolvent of ∂f

▶ proxf = R∂f = (I + ∂f )−1

proof: let z ∈ proxf (x),

z = argmin
z

f (z) +
1

2
∥z − x∥2

0 ∈ ∂f (z) + z − x

(x − z) ∈ ∂f (z)

▶ proxf = ∇h∗ where h(x) = f (x) + 1
2∥x∥

2

proof: h is CCP and ∂h = ∂f + I , so

∇h∗ = (∂h)−1 = (I + ∂f )−1

▶ proxf is a function
proof: h is strongly convex, so h∗ is smooth
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Proximal point method

fixed point iteration using prox is called proximal point method

x (k+1) = proxtf (x
(k))

properties:

▶ proxtf is 1
2 averaged for any λ > 0, so

▶ converges for any λ > 0

▶ to a zero of ∂f (= FPs of proxλf )

▶ if f is α-strongly convex, proxλf is a contraction,
so converges linearly

▶ not usually a practical method (often, as hard as solving original
problem)
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Method of multipliers

consider
minimize f (x)
subject to Ax = b

let
g(µ) = −(inf

x
f (x) + µT (Ax − b)) = f ∗(−ATµ) + µTb

be the (negative) dual function, and consider the proximal point
method for t > 0

y (k+1) = Rt∂g (y
(k))

▶ ∂g(v) = −A∂(f ∗(−AT v)) + b

▶ x ∈ ∂(f ∗(−AT v)) iff −AT v ∈ ∂f (x)

▶ so if v = Rt∂g (y) = (I + t∂g)−1(y), then

y ∈ v + t∂g(v)

y = v − α(Ax − b) for some x with − AT v ∈ ∂f (x)
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Method of multipliers

notice x minimizes the Augmented Lagrangian Lα(x , y)

0 ∈ ∂f (x) + AT (y + α(Ax − b))

x ∈ argmin
x

f (x) + yT (Ax − b) + α/2∥Ax − b∥2 = Lα(x , y)

so proximal point method for g is

x (k+1) ∈ argmin
x

Lα(x , y
(k))

y (k+1) = y (k) + α(Ax (k+1) − b)

also called the method of multipliers

properties:

▶ always converges
▶ if f is smooth, then g is strongly convex, Rt∂g is a contraction,

and the method of multipliers converges linearly
▶ useful if f is smooth and A is very sparse

(alternative: optimize over x ∈ x0 + (A)z ; but (A) is generally
dense)
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Composition rules

suppose A has Lipschitz constant LA, B has Lipschitz constant LB
then A ◦ B has Lipschitz constant ≤ LALB

proof:

∥A ◦ By − A ◦ Bx∥ ≤ LA∥By − Bx∥ ≤ LALB∥y − x∥

▶ nonexpansive ◦ nonexpansive = nonexpansive

▶ nonexpansive ◦ contractive = contractive
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Reductions

suppose f is smooth, g is non-smooth but proxable. solve
unconstrained problem

minimize f (x) + g(Ax)

or, rewrite as
minimize f (x) + g(y)
subject to Ax = y

how general is this formulation?
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Two linear operators

suppose f is smooth, g is non-smooth but proxable. solve

minimize f (Bx) + g(Ax)

reformulate

:
f (Mx) is smooth whenever f is, so it’s already in the right form

special case: f (x) =
∑m

i=1 fi (x)
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Many f s

suppose fi is smooth for i = 1, . . . ,m, g is non-smooth but proxable.
solve

minimize
∑n

i=1 fi (xi ) + g(y)
subject to

∑n
i=1 Aixi = y

reformulate:

x = (x1, . . . , xm), f (x) =
∑n

i=1 fi (xi ),
Ax =

∑n
i=1 Aixi = y .

minimize f (x) + g(y)
subject to Ax = y
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Many gs

suppose f is smooth, gi is non-smooth but proxable for i = 1, . . . ,m.
solve

minimize f (x) +
∑m

i=1 gi (yi )
subject to Aix = yi

reformulate:

Ax = (A1x , . . . ,Amx) = y , g(y) =
∑m

i=1 gi (yi ).
g is separable so still proxable.

minimize f (x) + g(y)
subject to Ax = y
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Conic problem

suppose we have a conic problem over cone K

minimize cT x
subject to Ax = b

x ∈ K

reformulate:

minimize cT x + IK(y − b)
subject to Ax = y

proxIK = ΠK is projection onto cone K
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Strongly convex

suppose f is strongly convex, g is non-smooth but proxable. solve

minimize f (x) + g(y)
subject to Ax = y

reformulate:

duality!

L(x , y , µ) = f (x) + g(y) + µT (Ax − y)

inf
x,y

L(x , y , µ) = −f ∗(−ATµ)− g∗(µ)

dual formulation:

maximize f ∗(−ATµ) + g∗(µ)

notice:

▶ f ∗ ◦ (−AT ) smooth

▶ if g =
∑m

i=1 gi (yi ) is separable, so is
g∗(µ) = supy

∑m
i=1(µiyi − gi (yi ))
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Forward backward splitting

suppose F is 1
β -cocoercive and G is maximal monotone

(eg, F = ∇f and G = ∂g)

find x
subject to 0 ∈ Fx + Gx

analyze optimality conditions:

0 ∈ Fx + Gx

−tFx ∈ tGx

(I − tF )x ∈ (I + tG )x

x = (I + tGx)−1(I − tF )x

x = RtG (I − tF )x
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Forward backward splitting

x+ = RtG (I − tF )x

convergence:

▶ RtG is 1
2 -averaged

▶ for t ∈ (0, 2
β ), I − tB is averaged

▶ so FBS converges

▶ if either F or G is strongly monotone, then FBS converges linearly
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Proximal gradient

suppose f is smooth, g is non-smooth but proxable.
then ∇f is 1

β -cocoercive and ∂g is maximal monotone.

FBS for these operators is called proximal gradient method

x+ = proxtg (x − t∇f (x))

solves unconstrained problem

minimize f (x) + g(x)

convergence:

▶ for t ∈ (0, 2
β ), converges

▶ if either f or g is strongly convex, then proximal gradient
converges linearly

special case: projected gradient
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Proximal gradient: interpretation

consider update that linearizes f and regularizes around x (k)

x (k+1) ∈ argmin
x

f (x (k)) +∇f (x (k))T (x − x (k)) +
1

2t
∥x − x (k)∥2

+g(x)

0 ∈ ∇f (x (k)) + x (k+1) − x (k) + ∂g(x (k+1))

x (k) −∇f (x (k)) ∈ x (k+1) + ∂g(x (k+1))

x (k+1) = proxtg (x
(k) − t∇f (x (k)))

we see proximal gradient update solves

minimize g + quadratic approximation to f

variable metric:

▶ regularize with ∥x − x (k)∥2L instead of 1
2t ∥x − x (k)∥2

▶ reduces to standard proximal gradient when L = 1
t I

▶ converges so long as f is 1-smooth wrt the metric L
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Proximal gradient method and composition

suppose f is smooth and g is proxable

▶ easy to apply proximal gradient method to

minimize f (Ax) + g(x),

since ∇(f (Ax)) = AT (∇f )(Ax)

▶ hard to apply proximal gradient method to

minimize f (x) + g(Ax),

since
▶ proxg◦A may not be easy to evaluate even if proxg is easy
▶ proxg◦A may not be separable even if g is separable

what should we do instead?
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Can’t we just compute A−1?

let y = Ax , can’t we just use proximal gradient to solve

minimize f (A−1y) + g(y)?

why not?

▶ A may not be invertible

▶ even if A is invertible, inverting it is numerically unstable

▶ if A is sparse with s nonzeros, applying A and AT take O(s)
flops, while inverting A takes O(n3) flops
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can we use conjugate gradient?

how about using conjugate gradient instead of forming A−1?

to compute
y+ = proxtg (y − tA−T (∇f )(A−1y)),

do

▶ solve Ax = y for x

▶ solve ATg = ∇f (x) for g

▶ update y+ = proxtg (y − tg)

problem: what if y+ ̸∈ range(A)?
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Dual proximal gradient method

suppose f is strongly convex and g is proxable. instead of

minimize f (x) + g(Ax),

consider its dual problem

minimize f ∗(−ATµ) + g∗(µ)

proximal gradient on the dual is

µ(k+1) = proxtg∗(I − A∇f ∗)(−ATµ(k))

much easier: only need to multiply by A and AT
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Dual proximal gradient method: convergence

sublinear convergence rate if both operators are nonexpansive:

▶ f is α-strongly convex =⇒ f ∗ is 1
α -smooth

=⇒ ∇(f ∗ ◦ −AT ) is α
∥AT∥2 cocoercive =⇒ ∇(f ∗ ◦ −AT ) is

∥AT∥2

α Lipschitz

▶ g is CCP =⇒ g∗ is CCP =⇒ proxg∗ is nonexpansive

so get sublinear convergence if t ∈ (0, 2α
∥AT∥2 )

linear convergence if in addition either operator is contractive:

▶ gradient update is contractive f ∗ strongly convex,
which happens if f β-smooth and A is surjective

▶ prox update is contractive if g∗ is strongly convex
which happens if g is smooth
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Dual proximal gradient method: challenges

two challenges

▶ how to recover primal solution from dual solution?

▶ how to compute proxtg∗?

(we’ve already seen y ∈ ∇f ∗(x) iff x ∈ ∂f (y))
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Dual proximal gradient method: recover primal

how to recover primal solution from dual solution?

if µ⋆ is dual optimal for minimize f (x) + g(Ax),
then KKT conditions =⇒ x⋆ primal optimal iff

x⋆ ∈ argmin
x

f (x) + g(y) + (µ⋆)T (Ax − y)

0 ∈ ∂f (x⋆) + ATµ⋆

x⋆ ∈ (∂f )−1(−ATµ⋆)

x⋆ ∈ ∇f ∗(−ATµ⋆)

recovers primal solution
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Moreau’s identity

Moreau’s identity:
proxg + proxg∗ = I

proof: let z = proxg (x). then

proxg (x) = (I + ∂f )−1x = z

x ∈ (I + ∂f )(z)

x − z ∈ ∂f (z)

∂f ∗(x − z) ∋ z

(I + ∂f ∗)(x − z) ∋ x − z + z = x

x − z = (I + ∂f ∗)−1x = prox∗g (x)

so proxg (x) + proxg∗(x) = z + x − z = x

▶ scale g by t to compute

z = proxtg (z) + prox(tg)∗(z) = proxtg (z) + tproxt−1g∗(t−1z)
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Dual proximal gradient method: compute proxtg∗

dual proximal gradient method

x = ∇f ∗(−ATµ)

µ+ = proxtg∗(µ+ tAx)

how to compute proxtg∗(µ+ tAx)?

use Moreau’s identity with tz = µ+ tAx :

proxtg∗(tz) = tz − prox1/tg (z)

dual proximal gradient method becomes

x = ∇f ∗(−ATµ)

µ+ = µ+ tAx − prox1/tg (µ/t + Ax)
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Dual proximal gradient method: interpretation

dual proximal gradient method

x = ∇f ∗(−ATµ)

µ+ = µ+ tAx − prox1/tg (µ/t + Ax)

▶ state ∇f ∗(−ATµ) explicitly:

∇f ∗(−ATµ) = argmax
x

(−ATµ)T x − f (x) = argmin
x

f (x) + µTAx

▶ state prox1/tg (µ/t + Ax) explicitly:

prox1/tg (µ/t + Ax) = argmin
y

g(y) +
t

2
∥y − Ax − µ/t∥2

dual proximal gradient method becomes

x = argmin
x

f (x) + µTAx

y = argmin
y

g(y) +
t

2
∥y − Ax − µ/t∥2

µ+ = µ+ t(Ax − y)
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Many more splitting methods

▶ Peaceman Rachford Splitting

▶ Douglas Rachford Splitting

▶ Davis Yin Three Operator Splitting

▶ Chambolle Pock

▶ ADMM

details in Ryu and Boyd monograph
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Chambolle Pock

consider the problem

minimize f (x) + g(Ax)

Chambolle Pock iteration is

x (k+1) = Rt∂f (x
(k) − tATµ(k))

µ(k+1) = Rt∂g∗(µ(k) + tA(2x (k+1) − x (k)))

▶ converges when t < 1
∥A∥

▶ easy whenever f and g are proxable

▶ only requires multiplication by A and AT
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Distributed optimization

consider the problem

minimize
∑n

i=1 fi (xi ) +
∑n

j=1 gj(yj)

subject to Ax = y

Chambolle Pock iteration is a distributed optimization method! define

N (i) = {j : Aij ̸= 0} N (j) = {i : Aij ̸= 0}

CP iteration is

▶ for each i , compute

x
(k+1)
i = proxfi (x

(k)
i − t

∑
j∈N (i)

Aiju
(k)
j )

▶ for each j , compute

µ
(k+1)
j = proxg∗

j
(µ

(k)
j + t

∑
i∈N (j)

Aij(2x
(k+1)
i − x

(k)
i ))
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ADMM

consider the problem

minimize f (x) + g(z)
subject to Ax + Bz = c

Augmented Lagrangian for this problem (with dual variable y) is

Lt(x , z , y) = f (x) + g(z) + yT (Ax + Bz − c) + t/2∥Ax + Bz − c∥2

Alternating Directions Method of Multipliers (ADMM) iteration is

x (k+1) = argmin
x

Lt(x , z
(k), y (k))

z (k+1) = argmin
z

Lt(x
(k+1), z , y (k))

y (k+1) = y (k) +
1

t
(Ax (k+1) + Bz (k+1) − c)

(special case of Douglas Rachford splitting)
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ADMM

properties:

▶ converges for any t > 0 (but can be very slow)

▶ letting y = tu, equivalent to the iteration

x (k+1) = argmin
x

f (x) + t/2∥Ax + Bz (k) − c + u(k)∥2

z (k+1) = argmin
z

g(z) + t/2∥Ax (k+1) + Bz − c + u(k)∥2

u(k+1) = u(k) + Ax (k+1) + Bz (k+1) − c

▶ frequently used for distributed optimization:
problems decouple if A or B is diagonal
(note this is more restrictive requirement for distributed opt
compared to Chambolle Pock)

37 / 37



Operator splitting for distributed optimization

economy with m agents and n goods.

▶ agent i has consumption vector xi ∈ Rn

▶ agent i produces (xi )j of good j if (xi )j > 0

▶ agent i consumes −(xi )j of good j if (xi )j < 0

▶ agent i has utility function fi (xi )

▶ supply = demand if
∑

i xi = 0.

the economy solves the problem

minimize
∑n

i=1 fi (xi )
subject to

∑
i xi = 0
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