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1 Constructing the Dual
Paralleling our developments for linear optimization,1 the starting point will be the following (pri-
mal) convex optimization problem:

Primal Problem

(P) minx f0(x)
fi(x) ≤ 0, i = 1, . . . ,m
x ∈ X.

(1)

We henceforth call this the primal problem and concisely refer to as problem (P).
Recall that in a convex optimization problem, the relevant domain X ⊆ Rn on which functions

are defined must be a convex set and the functions f0, f1, . . . , fm are real-valued convex functions
on X. Note that our formulation does not include any equality constraints. In convex optimization,
we can allow equality constraints only involving linear functions, which without loss of
generality, can be included in the definition of the convex domain X. So if there are equality
constraints, say Ax = b, you can think of the set X as the affine subspace of Rn corresponding to
these equality constraints, X = {x ∈ Rn : Ax = b}.

Some of the results that we are going to state will make reference to the interior of X. A point
x is in the interior of X if B(x, r) := {y : ∥y − x∥ ≤ r} ⊂ X for some r > 0. However, in many
cases it is helpful to work with sets X that are not full-dimensional (for instance, in the example
above where X includes equality constraints). For that purpose, we need to define the following
definition.

Definition 1.1 (Relative Interior). The relative interior of a set X is:

rel int(X) :=
{
x ∈ X : ∃ r > 0 so that B(x, r) ∩ aff(X) ⊆ X

}
. (2)

Recall that aff(X) is the affine hull of X, i.e., the set of all affine combinations of points in
X, aff(X) := {θ1x1 + · · · + θkxk : xi ∈ X,

∑k
i=1 θi = 1

}
. In words, the relative interior of X is the

interior defined relative to the affine hull of X. This gives a proper notion of the interior even for
sets that are not full-dimensional.

What is the relative interior of the following sets?

• {(x, y) ∈ R2 | (x, y) ∈ [0, 1]2}
1Our discussion is inspired by the lecture notes (Ben-Tal and Nemirovski, 2023) and by the treatment in the books

“Convex Optimization” (Boyd and Vandenberghe, 2004) and “Convex Optimization Theory” (Bertsekas, 2009).
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• {(x, y) ∈ R2 | x+ y = 1, x ≥ 0, y ≥ 0}

• {(x, y) ∈ R2 | x2 + y2 = 1}

Throughout, we assume that the relative interior of X is non-empty. We also assume that the
optimal value of (P) is achieved and denote it by p⋆.

Mirroring our developments in linear optimization, we want to examine questions like:

1. For x feasible for (P), how to quantify the optimality gap f0(x) − p⋆?

2. How to certify that a specific x⋆ is optimal in (P)?

Duality theory will yet again help us answer such questions. We will formulate the dual problem
as a lower bound on the primal, discuss briefly weak duality, and derive sufficient conditions under
which strong duality holds.

To construct lower bounds on the optimal value p⋆ of (P), let us define the Lagrangean
function. For any λ ∈ Rm with λ ≥ 0, consider:

L(x, λ) = f0(x) +
n∑

i=1
λifi(x). (3)

By construction, it can be immediately seen that

L(x, λ) ≤ f0(x), for any x feasible in (P), (4)

so L(x, λ) is a lower bound for f(x). To derive a lower bound on the optimal value p⋆ in problem (P),
we can minimize L(x, λ) over x ∈ X. Therefore, let us define:

g(λ) := infx∈X L(x, λ). (5)

We can immediately infer that g(λ) is a valid lower bound, g(λ) ≤ p⋆, and therefore it is natural
to consider the problem of finding the best lower bound:

Dual Problem

(D) sup
λ≥0

g(λ). (6)

Just like in linear optimization, this problem is called the dual of the primal problem (P)
and for conciseness, we also refer to it as problem (D). Note that the dual problem is a convex
optimization problem because the function g(λ) is concave. In fact, this would be true even if the
primal problem were non-convex!

The following weak duality result is immediate.

Theorem 1.2 (Weak Duality). If x is feasible for (P) and λ ≥ 0, then:

g(λ) ≤ f(x).

In particular, d⋆ ≤ p⋆.
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We would obviously like to develop a strong duality result that would tell us that p⋆ = d⋆.
However, the situation with (nonlinear) convex optimization is unfortunately more subtle than
with linear optimization: even when the primal (P) has a finite optimal solution, there may be a
non-zero duality gap. The following example shows how this can arise.

Example 1.3 (Non-zero duality gap). Consider the convex problem

minimize
(x,y)∈X

e−x

x2/y ≤ 0

with variables x, y and domain X = {(x, y) | y ≥ 1}. We have p⋆ = 1. The Lagrangian is
L(x, y, λ) = e−x + λx2/y, and the dual function is

g(λ) = inf
x,y≥1

(
e−x + λ

x2

y

)
=
{

0 λ ≥ 0,
−∞ λ < 0,

so we can write the dual problem as
d⋆ = max

λ≥0
0

with optimal value d⋆ = 0. The optimal duality gap is p⋆ − d⋆ = 1.

Moreover, even when the primal problem admits a (finite) optimal solution, the dual may not
necessarily admit an optimal solution, as in the following example.

Example 1.4 (No dual optimal solution). Consider the optimization problem:

minimize
x∈R

x

x2 ≥ 0

The optimal solution is trivially x⋆ = 0, so p⋆ = 0. The dual function is:

g(λ) = inf
x∈R

{
x− λx2

}
=
{ 1

4λ if λ < 0,
−∞ if λ ≥ 0.

Thus d⋆ = −∞ and the dual does not admit an optimal solution.

Thus, in the subsequent developments, our main goal is to provide sufficient conditions under
which strong duality holds. These conditions are sometimes called constraint qualifications
and several variations exist. Perhaps the most prominent and useful of these is Slater’s condition,
which we define next.

Definition 1.5 (Slater Condition). Let X ⊆ Rn and f1, . . . , fm be real-valued functions on X.
We say that fi satisfy the Slater condition on X if there exists x ∈ rel int(X) such that

fj(x) < 0, j = 1, . . . ,m.
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This condition essentially asks that there exists a point x that is strictly feasible because
the inequality constraints hold strictly. The condition can actually be further refined if some of
the functions fi are affine: for instance, if f1, . . . , fr are affine, then we only require fi(x) ≤ 0
for i = 1, . . . , r and fi(x) < 0 for i = r + 1, . . . ,m, i.e., the strict inequality is only required for
non-linear functions.

As we will see, Slater’s condition implies that strong duality holds and also that the dual
optimal value is attained, i.e., that there exists a feasible x⋆ in the primal and a λ⋆ ≥ 0 such that
f(x⋆) = g(λ⋆).

1.1 A Geometric View of Duality

Before proving our main strong duality result, we provide a natural geometric interpretation of
the dual construction that will also make the proof more clear. The construction is depicted in
Figure 1. To introduce it, assume that there is only one inequality constraint in (P) (i.e., m = 1),
and let

G := {(u, t) ∈ R2 : ∃x ∈ Rn, t = f0(x), u = f1(x)}

denote the set of values taken by the objective and constraint over the set x ∈ X. The optimal
value of the primal is then expressed as:

p⋆ = inf
{
t : (u, t) ∈ G, u ≤ 0

}
,

and we can see that (P) is feasible if and only if G intersects the left-half plane. Note that when
evaluating the dual function, we are minimizing the affine function λ · u + 1 · t over (u, t) ∈ G, so
we can write:

g(λ) = min
u,t

{
(λ, 1)T(u, t) : (u, t) ∈ A

}
,

If the minimum is finite, then the inequality (λ, 1)T(u, t) ≥ g(λ) defines a supporting hyperplane for
the set G and the intersection between this hyperplane and the vertical axis u = 0 gives the value
of the dual, g(λ).

Nothing would change if we replaced G by its “upper extension” A = G + R2
+ ≡

{
(u, t) : ∃x ∈

X, t ≥ f0(x), u ≥ f1(x)
}

because A includes all the points in G and points that are strictly “worse”
for the optimization that defines the dual value. In this case, because (0, p⋆) ∈ bd(A), we have
p⋆ ≥ g(λ) for any λ ≥ 0, so weak duality always holds.

If the problem is convex, then the set A will also be convex. And if Slater’s condition holds,
then the interior of A will intersect the left half-plane, and strong duality will hold.

2 Strong Duality
The following result formalizes the intuition above.

Theorem 2.1 (Strong Duality in Convex Optimization). Let X ⊂ Rn be convex, let
f0, f1, . . . , fm be real-valued convex functions on X, and let f1, . . . , fm satisfy the Slater condi-
tion on X. Then, p⋆ = d⋆ and the dual problem attains its optimal value.
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Figure 1: Geometric interpretation of the dual function and lower bound g(λ) ≤ p⋆ for problem (P)
with one inequality constraint. Given λ ≥ 0, to find g(λ) we must minimize t+λ ·u over (u, t) ∈ G.
This yields a supporting hyperplane for G who intersection with the vertical axis u = 0 yields
g(λ). Here, strong duality does not hold because the optimal dual solution λ⋆ yields a lower bound
d⋆ so that d⋆ < p⋆. Note that nothing would change if we replaced G by its upper extension
A = G + R2

+ ≡
{
(u, t) : ∃x ∈ X, t ≥ f0(x), u ≥ f1(x)

}
.

Proof. We adopt a proof that leverages the geometric intuition developed above. For problem (P),
let use define the upper-extension A as:

A =
{
(u, t) ∈ Rm × R : ∃x ∈ X, t ≥ f0(x), ui ≥ fi(x), i = 1, . . . ,m

}
. (7)

The set A is convex because it is the projection of the convex set {(x, u, t) : x ∈ X, t ≥ f0(x), ui ≥
fi(x), i = 1, . . . ,m} onto the (u, t) coordinates.

We next define a second convex set B as

B = {(0, s) ∈ Rm × R | s < p⋆}.

These sets are depicted in Figure 2. We claim that A∩B = ∅. To see this, suppose (u, t) ∈ A∩B.
Because (u, t) ∈ B, we have u = 0 and t < p⋆. But (u, t) ∈ A, which implies that there exists an
x ∈ X with fi(x) ≤ ui = 0, i = 1, . . . ,m and with f0(x) ≤ t < p⋆, which contradicts p⋆ being the
optimal value of (P).

By the separating hyperplane theorem, there exists (λ, µ) ∈ Rm+1 ̸= 0 and b with:

∀ (u, t) ∈ A, λTu+ µt ≥ b, (8a)
∀ (u, t) ∈ B, λTu+ µt ≤ b. (8b)

We claim that (8a) implies that λ ≥ 0 and µ ≥ 0. Otherwise, we would have

inf
(u,t)∈A

(λTu+ µt) = −∞

because the recession cone of A contains the rays ei (for i = 1, . . . ,m + 1), which would contra-
dict (8a).
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Figure 2: Illustration for the strong duality proof. The set A is shaded and the set B is the (red)
vertical segment, not including the point (0, p⋆). The sets are convex and do not intersect, so a
separating hyperplane must exist. The Slater condition guarantees that the separating hyperplane
is non-vertical, because it must separate a point (ū, t̄) = (f1(x̄), f0(x̄)) corresponding to a Slater
point x̄.

Moreover, condition (8b) simplifies to µt ≤ b for all t < p⋆, and hence, µp⋆ ≤ b. Together with
(8a), we conclude that we identified a λ ≥ 0 such that for any x ∈ X,

L(x, λ) :=
m∑

i=1
λifi(x) + µf0(x) ≥ b ≥ µp⋆. (9)

Case 1. Assume that µ > 0. Then, we can divide inequality (9) by µ to obtain

L(x, λ/µ) ≥ p⋆, ∀x ∈ X,

from which it follows that g(λ/µ) ≥ p⋆. By weak duality, g(λ/µ) ≤ p⋆, so in fact g(λ/µ) = p⋆,
which implies that strong duality holds and the dual optimum is attained.

Case 2. Now suppose µ = 0. From (9), we conclude that:
m∑

i=1
λifi(x) ≥ 0, ∀x ∈ X.

Applying this to the point x̄ that satisfies the Slater condition, we have
m∑

i=1
λifi(x̄) ≥ 0.

Because x̄ satisfies the Slater condition, we have fi(x̄) < 0 for i = 1, . . . ,m, which together with
λ ≥ 0 implies that we must have λ = 0. But this contradicts the separating hyperplane assumption
that (λ, µ) ̸= 0.
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It should be noted that other versions of strong duality results are possible depending on the
constraint qualification conditions. Moreover, if we are solely interested in guaranteeing strong
duality and that the primal problem achieves is optimal value without insisting that the dual
should achieve its optimum, other conditions are possible.

Proposition 2.2 (Convex Programming Duality - Existence of Primal Optimal Solutions).
Assume that (P) is feasible, that the convex functions fi, i = 0, . . . ,m are closed, and that the
function

F (x, 0) =
{
f0(x) if fi(x) ≤ 0, i = 1, . . . ,m, x ∈ X,

+∞, otherwise,

has compact level sets. Then p⋆ = d⋆ and the set of optimal solutions of (P) is nonempty and
compact.

For a proof, the interested reader can refer to Proposition 5.3.7 of Bertsekas (2009). The compact-
ness requirement of this proposition is reasonable if either X is compact or if X is closed and f0 has
compact level sets. For instance, the latter happens if f0 is a continuous and coercive function,
i.e., lim∥x∥→∞ f0(x) = +∞. However, this proposition does not guarantee the existence of a dual
optimal solution; Example 1.4 exactly illustrates this point.

2.1 Explicit Equality Constraints

The developments above assumed that any equality constraints are included in the definition of the
set X. In applications, it is often useful to write out the equality constraints explicitly, so we now
briefly extend the theory above to accommodate this. Consider a more general convex optimization
problem:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

Ax = b

x ∈ X.

(10)

where fi, i = 0, . . . ,m are convex and without loss of generality, we assume the matrix A ∈ Rp×n

has rank p. We define the Lagrangian L : Rn × Rm × Rp → R associated with problem (10) as

L(x, λ, ν) = f0(x) +
m∑

i=1
λifi(x) + νT(Ax− b),

where we use ν ∈ Rp to denote the Lagrange multipliers associated with the linear constraints
Ax = b. The dual objective can be written as:

g(λ, ν) := infx∈X L(x, λ, ν),

and the dual problem becomes:

maximize g(λ, ν)
subject to λ ≥ 0.

(11)
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The main thing to note is that the Lagrange multipliers ν associated with equality constraints are
not sign-constrained, so ν can be both positive and negative values in the dual problem. This
is completely consistent with the developments in linear optimization and should not come as a
surprise.

2.2 Nonlinear Farkas Lemma

The previous developments also highlight that non-linear version of the Farkas Lemma is readily
available. Specifically, we have the following result.

Proposition 2.3 (Nonlinear Farkas Lemma). Let X ⊂ Rn be convex, let f0, f1, . . . , fm be real-
valued convex functions on X, and assume f1, . . . , fm satisfy the Slater condition on X. Then,
the following system of inequalities has a solution

∃x : f0(x) < z, fj(x) ≤ 0, j = 1, . . . ,m, x ∈ X, (12)

if and only if the following system has no solution:

∃λ : inf
x∈X

f(x) +
m∑

j=1
λjfj(x)

 ≥ z, λj ≥ 0, j = 1, . . . ,m.

The proof essentially mirrors the arguments used in the strong duality proof. As in the linear
case, the Farkas Lemma provides a very powerful certificate of feasibility and its role is essentially
equivalent to strong duality.

3 Applications of Convex Duality

3.1 Minimum Euclidean Distance Problem

Consider the problem of finding the minimum Euclidean distance from a given point y to an affine
set {z : Az = b̃}. This problem can be written as:

min
z

∥z − y∥2
2 : Az = b̃,

where A ∈ Rp×n, b̃ ∈ Rp and we assume that A has rank p. With a change of variables x := z − y
and by letting b := b̃−Ay, this can be reformulated as:

min
x

xTx : Ax = b.

The Lagrangian for this problem is

L(x, ν) = xTx+ νT(Ax− b),

where ν ∈ Rp is the dual variable associated with the constraint Ax = b. The dual function is
given by g(ν) = infx L(x, ν). Since L(x, ν) is a convex quadratic function of x, we can find the
minimizing x from the optimality condition

∇xL(x, ν) = 2x+ATν = 0 ⇔ x = −1
2A

Tν. (13)
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Therefore, the dual function is

g(ν) = L

(
−1

2A
Tν, ν

)
= −1

4ν
TAATν − bTν,

which is a concave quadratic function with domain Rp.
Note that the primal problem trivially satisfies the Slater condition (provided that it is feasible).

Therefore, p⋆ = d⋆. Moreover, to find the optimal value of the dual, which is an unconstrained
convex optimization problem, we can simply set the gradient equal to zero, which leads to:

−1
2AA

Tν = b.

Because A is assumed to have rank p, the matrix AAT is an invertible p×p matrix, so we obtain the
optimal dual solution ν⋆ = −2(AAT)−1b. Moreover, the optimal value of the dual (and, by strong
duality, the primal) is:

p⋆ = d⋆ = g(ν⋆) = bT(AAT)−1b.

Moreover, this also implies from (13) that the optimal primal solution is x⋆ = −1
2A

Tν⋆ = AT(AAT)−1b!
(Note that this point is feasible in the primal and it achieves the optimal value p⋆!)

3.2 Quadratic Programs

The example above is a special instance of the problem of minimizing a quadratic function subject
to linear constraints – a problem that is generically called a quadratic program (QP). When
there are only equality constraints, this problem can be reformulated as:

min
x

xTQx : Ax = b,

where Q ≻ 0 is a positive definite matrix. We can follow an identical line of reasoning as above to
form the Lagrangian and derive the dual and the optimal solution.

We now consider the case with inequality constraints, which we write more generally:

minimize
x

1
2x

TQx+ cTx (14)

Ax ≤ b (15)
where Q ∈ Rn×n and Q ≻ 0. The Langragian function is:

L(x, λ) = 1
2x

TQx+ cTx+ λT(Ax− b)

and the dual function is:

g(λ) = −λTb+ inf
x∈Rn

{1
2x

TQx+ cTx+ λTAx
}
.

By taking the gradient, we can see that the infimum is achieved at x = −Q−1(c+ATλ). Therefore,
the fual function becomes:

g(λ) = −1
2λ

TAQ−1ATλ− λT(b+AQ−1c) − 1
2c

TQ−1c.

Assuming the primal is feasible (i.e., Ax ≤ b is feasible), strong duality always holds for this
problem so we can solve either the primal or the dual. The dual problem entails maximizing a
concave quadratic function subject to the constraints λ ≥ 0 and in this case, it may be simpler to
solve than the primal because it is very easy to project onto the feasible set, so we can apply a
gradient descent algorithm with a correction step. (More on that later in the course!)
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3.3 Quadratically Constrained Quadratic Programs

Here, we consider a quadratically constrained quadratic program (QCQP):

minimize 1
2x

TQ0x+ qT0x+ r0

subject to 1
2x

TQix+ qTix+ ri ≤ 0 i = 1, . . . ,m,

variable x ∈ Rn,

(16)

where Q0 ≻ 0 is an n × n positive definite matrix and Qi ⪰ 0 are n × n positive semidefinite
matrices, i = 1, . . . ,m. The Lagrangian is:

L(x, λ) = 1
2x

TQ(λ)x+ q(λ)Tx+ r(λ),

where
Q(λ) = Q0 +

m∑
i=1

λiQi, q(λ) = q0 +
m∑

i=1
λiqi, r(λ) = r0 +

m∑
i=1

λiri.

It is possible to derive an expression for g(λ) for general λ, but it is rather complicated. However,
because λ ≥ 0 in our case, we have Q(λ) ≻ 0 and therefore:

g(λ) = inf
x
L(x, λ) = −1

2q(λ)TQ(λ)−1q(λ) + r(λ).

We can therefore express the dual problem as

maximize − 1
2q(λ)TQ(λ)−1q(λ) + r(λ)

subject to λ ≥ 0
variable λ ∈ Rm.

(17)

The Slater condition states that strong duality between (16) and (17) holds if the quadratic in-
equality constraints are strictly feasible, i.e., there exists an x with

1
2x

TQix+ qTix+ ri < 0, i = 1, . . . ,m.

3.3.1 A nonconvex quadratic problem with strong duality

A special QCQP instance also provides one of the rare examples where strong duality holds for
a nonconvex problem. Specifically, consider the problem of minimizing a nonconvex quadratic
function over the unit ball,

minimize xTQx+ 2qTx
subject to xTx ≤ 1

variable x ∈ Rn,

(18)

where Q ∈ Sn is a symmetric matrix but Q ̸⪰ 0 (i.e., Q is not positive semidefinite) and q ∈ Rn.
Because Q ̸⪰ 0, this is not a convex problem. This problem is sometimes called the trust region
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problem and arises from minimizing a second-order approximation of a (non-convex) function over
the unit ball, which is the region in which the approximation is assumed to be approximately valid.

The Lagrangian is

L(x, λ) = xTQx+ 2qTx+ λ(xTx− 1) = xT(Q+ λI)x+ 2qTx− λ,

so the dual function is given by

g(λ) =
{

−qT(Q+ λI)†q − λ Q+ λI ⪰ 0, q ∈ R(Q+ λI),
−∞ otherwise,

where M † is the (Moore-Penrose) pseudo-inverse of M , i.e., (MTM)−1MT for a full-rank matrix M .
The Lagrange dual problem is thus

maximize − qT(Q+ λI)†q − λ

subject to Q+ λI ⪰ 0, q ∈ R(Q+ λI),
variable λ ≥ 0,

(19)

Although it is not readily obvious from the expression above, this is a convex optimization problem.
In fact, it is readily solved since it can be expressed as

maximizeλ −
n∑

i=1

(vTiq)2

θi + λ
− λ

subject to λ ≥ − min
i=1,...,n

θi

λ ≥ 0,

where θi and vi are the eigenvalues and corresponding (orthonormal) eigenvectors of Q, and we
interpret (vTiq)2/0 as 0 if vTiq = 0 and as ∞ otherwise.

The Slater condition is trivially satisfied in problem (18) and we actually have zero optimal
duality gap: the optimal values of (18) and (19) are always the same. In fact, a more general result
holds: strong duality holds for any optimization problem with quadratic objective and a single
quadratic inequality constraint, provided Slater’s condition holds. And extensions are also possible
for two-sided quadratic constraints, i.e., constraints of the form ℓ ≤ xTZx ≤ u, provided that the
matrices Z and Q are simultaneously diagonalizable (see Ben-Tal and Teboulle (1996) for details).

3.4 Entropy Maximization

Consider the problem of maximizing the entropy in a distribution. The entropy is given by
−
∑n

i=1 xi log xi, so this problem can be written as the following minimization:

minimize f0(x) =
n∑

i=1
xi log xi

subject to Ax ≤ b,

1Tx = 1.

(20)
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Here, x is typically a distribution and the constraints x ≥ 0 are assumed to be embedded in
the constraints Ax ≤ b (so the matrix A ∈ Rm×n has rank n < m.) The problem is a convex
optimization problem because the functions x log x are convex on the domain x > 0 (take the second
derivative for a proof!) With λ ∈ Rm denoting the dual variables for the inequality constraints and
ν ∈ R denoting the dual variable for the equality constraint, the Lagrangian can be written as:

L(x, λ, ν) =
n∑

i=1
xi log xi + λT(Ax− b) + ν(1Tx− 1). (21)

The gradient with respect to the primal variable xi is:

∂L
∂xi

= log xi + 1 + λTAi + ν, (22)

where Ai is the i-th column of the matrix A. The first-order optimality condition yields:

xi = exp
(
−1 − λTAi − ν

)
, (23)

and the dual function is given by:

g(λ, ν) = −bTλ− ν −
n∑

i=1
exp

(
−AT

iλ− ν − 1
)

= −bTλ− ν − e−ν−1
n∑

i=1
e−AT

iλ.

3.5 Regularized Support Vector Machines

Consider a binary classification problem as shown in Figure 3. Given m data points xi ∈ Rn, each
of which is associated with a label yi ∈ {−1, 1}, the problem is to find a hyperplane that separates,
as much as possible, the two classes.

Figure 3: Two problem instances for the binary classification problem. The instance on the left
is separable: we can find a hyperplane that separates the blue squares from the green circles.
In contrast, the instance on the right is non-separable, so one typically seeks a hyperplane that
minimizes the total errors committed. With the hinge loss, the errors correspond to the sum of the
distances from the points to the hyperplane.

The two classes are separable by a hyperplane H(w, b) = {x : wTx + b = 0}, where w ∈ Rn,
w ̸= 0, and b ∈ R, if and only if wTxi + b ≥ 0 for yi = +1 and wTxi + b ≤ 0 if yi = −1. Thus, the
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following conditions on (w, b):

yi(wTxi + b) ≥ 0, i = 1, . . . ,m (24)

would ensure that the data set is separable by a linear classifier. In this case, the parameters w and
b allow us to predict the label associated with a new point x, via y = sign(wTx+ b). The feasibility
problem – finding (w, b) that satisfy the above separability constraints – is an LP. If the data set is
strictly separable (i.e., every inequality in (24) holds strictly), then we can rescale the constraints
and transform them into

yi(wTxi + b) ≥ 1, i = 1, . . . ,m.

However, in practice the two classes may not be linearly separable. In this case, we would like
find a hyperplane that minimizes the total number of classification errors. Strictly speaking, the
objective function corresponding to the number of mistakes has the form:

m∑
i=1

ψ(yi(wTxi + b)),

where ψ(t) = 1 if t < 0, and 0 otherwise. Unfortunately, this is non-convex and rather hard to
minimize (it would require solving an IP!) As an alternative, we can replace the objective with an
upper bound formed by using the hinge function, h(t) = (1 − t)+ = max(0, 1 − t). Our problem
becomes one of minimizing a piecewise linear “loss” function:

min
w,b

m∑
i=1

(1 − yi(wTxi + b))+.

At optimality, the value of the loss function can be read from Figure 3: it equals the sum of the
lengths of the dotted lines from data points that are wrongly classified to the hyperplane.

In practice, we often want to control the robustness of the resulting classifier and also to
guarantee that an optimal classifier is unique. It turns out that these objectives can be achieved
by solving the following regularized problem:

min
w,b

C ·
m∑

i=1
(1 − yi(wTxi + b))+ + 1

2∥w∥2
2,

where C > 0 is a parameter that controls the trade-off between robustness and performance on the
training set (a greater C encourages performance at the expense of robustness). This problem can
be written as a QP, by introducing slack variables:

min
w,b,v

1
2∥w∥2

2 + C
m∑

i=1
vi : v ≥ 0, yi(wTxi + b) ≥ 1 − vi, i = 1, . . . ,m,

or, more compactly:

min
w,b,v

1
2∥w∥2

2 + C1Tv : v ≥ 0, v + ZTw + by ≥ 1,

where ZT ∈ Rm×n is the matrix with rows given by yi · xT
i.
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The corresponding Lagrangian is

L(w, b, λ, µ) = 1
2∥w∥2

2 + CvT1 + λT(1 − v − ZTw − by) − µTv,

where µ ∈ Rm corresponds to the sign constraints on v. The dual function is given by

g(λ, µ) = min
w,b

L(w, b, λ, µ).

We can readily solve for w by taking derivatives, which leads to w(λ, µ) = Zλ. Taking derivatives
with respect to v yields the constraint C ·1 = λ+µ, while taking derivatives with respect to b leads
to the dual constraint λTy = 0. We obtain

g(λ, µ) =
{
λT1 − 1

2∥Zλ∥2
2 if λTy = 0, λ+ µ = C · 1,

+∞ otherwise.

We obtain the dual problem

d⋆ = max
λ≥0,µ≥0

g(λ, µ) = max
λ

λT1 − 1
2λ

TZTZλ : 0 ≤ λ ≤ C · 1, λTy = 0.

Strong duality holds, because the primal problem is a QP (note that we can always produce an
interior point with b sufficiently large). Importantly, the dual objective depends only on the so-
called kernel matrix K = ZTZ ∈ Sm

+ , and the dual problem involves only m variables and m + 1
constraints. Hence, the only dependence on the number of dimensions (features) n is via the
required computation of the kernel matrix, that is, on scalar products xT

ixj , 1 ≤ i ≤ j ≤ m. Thus,
duality allows a great reduction in the computational effort, compared to solving the original QP
in n variables and m constraints. This is known as the “kernel trick.”

Duality also shows that the optimal value of the problem is a convex function of the kernel
matrix, which allows us to understand how the results depend on the data matrix (and consider
robust objectives related to that, as we will discuss later in the course).

4 Saddle-point Theory
Our previous discussion may have made it seem like the primal and dual have slightly different
roles. In this section we give a different interpretation of Lagrange duality that will appear
more symmetric. To simplify the discussion, we consider again only the case with inequality
constraints, as in (1) (equality constraints can be readily accommodated). First note that

sup
λ≥0

L(x, λ) = sup
λ≥0

(
f0(x) +

m∑
i=1

λifi(x)
)

=
{
f0(x) if fi(x) ≤ 0, i = 1, . . . ,m,
∞ otherwise.

Indeed, if x is not feasible and fi(x) > 0 for some i, then supλ≥0 L(x, λ) = ∞ by taking λi → ∞.
And if fi(x) ≤ 0, i = 1, . . . ,m, then the optimal choice of λ is λ = 0, and supλ≥0 L(x, λ) = f0(x).
This means that we can express the optimal value of the primal problem as

p⋆ = inf
x∈X

sup
λ≥0

L(x, λ).
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By the definition of the dual function, we also have

d⋆ = sup
λ≥0

inf
x∈X

L(x, λ).

Thus, weak duality can be expressed as the inequality:

sup
λ≥0

inf
x∈X

L(x, λ) ≤ inf
x∈X

sup
λ≥0

L(x, λ) (25)

whereas strong duality is equivalent to the equality:

sup
λ≥0

inf
x∈X

L(x, λ) = inf
x∈X

sup
λ≥0

L(x, λ). (26)

It is worth putting these results into the context of the more general comparison of the following
two optimization problems:

sup
z∈Z

inf
w∈W

f(w, z) versus inf
w∈W

sup
z∈Z

f(w, z). (27)

In this context, a weak duality relation (25) holds irrespective of the properties of f and the
feasible sets in question, so we have

sup
z∈Z

inf
w∈W

f(w, z) ≤ inf
w∈W

sup
z∈Z

f(w, z)

for any f : Rn ×Rm → R and any W ⊆ Rn and Z ⊆ Rm. This general inequality is called the
max-min inequality. Strong duality means that the order of the minimization over
x and the maximization over λ ≥ 0 can be switched without affecting the result. When
equality holds, i.e.,

sup
z∈Z

inf
w∈W

f(w, z) = inf
w∈W

sup
z∈Z

f(w, z) (28)

we say that f (and W and Z) satisfy the strong max-min property or the saddle-point
property. We refer to a pair w⋆ ∈ W , z⋆ ∈ Z as a saddle-point for f (and W and Z) if

f(w⋆, z) ≤ f(w⋆, z⋆) ≤ f(w, z⋆)

for all w ∈ W and z ∈ Z. In other words, w⋆ minimizes f(w, z⋆) (over w ∈ W ) and z⋆

maximizes f(w⋆, z) (over z ∈ Z):

f(w⋆, z⋆) = inf
w∈W

f(w, z⋆), f(w⋆, z⋆) = sup
z∈Z

f(w⋆, z).

Returning to our discussion of Lagrange duality, we see that if x⋆ and λ⋆ are primal and dual
optimal points for a problem in which strong duality obtains, they form a saddle-point for the
Lagrangian. The converse is also true: If (x, λ) is a saddle-point of the Lagrangian, then x is
primal optimal, λ is dual optimal, and the optimal duality gap is zero. The following result
actually formalizes and proves this.
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Theorem 4.1 (Saddle Point Optimality Condition in Convex Programming). Let (P) be
an optimization program, L(x, λ) be its Lagrangian function, and let x⋆ ∈ X. Then:

(i) A sufficient condition for x⋆ to be an optimal solution to (P) is the existence of
the vector of Lagrange multipliers λ⋆ ≥ 0 such that (x⋆, λ⋆) is a saddle point of the
Lagrange function L(x, λ), i.e., satisfies:

L(x, λ⋆) ≥ L(x⋆, λ⋆) ≥ L(x⋆, λ) ∀x ∈ X, λ ≥ 0. (29)

(ii) If (P) is a convex optimization problem and satisfies the Slater condition, then the
above condition is also necessary for the optimality of x⋆: if x⋆ is optimal for (P),
then there exists λ⋆ ≥ 0 such that (x⋆, λ⋆) is a saddle point of the Lagrangian function.

Proof. (i): Assume that for a given x⋆ ∈ X there exists λ⋆ ≥ 0 such that (29) is satisfied.
We prove that x⋆ is optimal for (P). First, x⋆ is feasible: indeed, if fj(x⋆) > 0 for some j,
then supλ≥0 L(x⋆, λ) = +∞, which is forbidden by the second inequality in (29). Because x⋆

is feasible, supλ≥0 L(x⋆, λ) = f0(x⋆), and we conclude from the second inequality in (29) that
L(x⋆, λ⋆) = f0(x⋆). Now, the first inequality in (29) reads

f0(x) +
m∑

j=1
λ⋆

jfj(x) ≥ f0(x⋆) ∀x ∈ X.

This inequality implies that x⋆ is optimal: indeed, if x is feasible for (P), then the left side of
the inequality is ≤ f0(x) because λ⋆ ≥ 0 and fj(x) ≥ 0, so f(x) ≥ f(x⋆).

(ii): Assume that (P) is a convex program, x⋆ is its optimal solution, and the problem satisfies
the Slater condition. Then, we prove there exists λ⋆ ≥ 0 such that (x⋆, λ⋆) is a saddle point
of the Lagrange function. From the Convex Programming Duality Theorem, the dual problem
(D) has a solution λ⋆ ≥ 0, and the optimal value of the dual problem equals f(x⋆):

f0(x⋆) = g(λ⋆) ≡ inf
x∈X

[
f0(x) +

m∑
j=1

λ⋆
jfj(x)

]
.

In particular, this implies that

f0(x⋆) ≤ L(x⋆, λ⋆) = f0(x⋆) +
m∑

j=1
λ⋆

jfj(x⋆).

But all the terms in the sum ∑m
j=1 λ

⋆
jfj(x⋆) are negative (because x⋆ and λ⋆ are feasible for the

primal and dual, respectively), so the inequality above implies that each term must actually
be zero. So λ⋆

j · fj(x⋆) = 0 and we have f(x⋆) = L(x⋆, λ⋆). Therefore:

L(x⋆, λ⋆) = f(x⋆) = inf
x∈X

L(x, λ⋆).

Because x⋆ is feasible for (P), we have L(x⋆, λ) ≤ f(x⋆) for λ ≥ 0, implying

L(x⋆, λ) ≤ L(x⋆, λ⋆) ≤ L(x, λ⋆)

for all x ∈ X and λ ≥ 0.
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4.1 Game interpretation

The saddle-point properties developed above also bare a natural interpretation in terms of
a continuous zero-sum game between a decision maker and an adversary. If the first player
chooses w ∈ W , and the second player selects z ∈ Z, then player 1 pays an amount f(w, z) to
player 2. Player 1 therefore wants to minimize f , while player 2 wants to maximize f .
The critical comparison between

sup
z∈Z

inf
w∈W

f(w, z) versus inf
w∈W

sup
z∈Z

f(w, z). (30)

then boils down to the order of play. Suppose that player 1 makes their choice first, and then
player 2, after learning the choice of player 1, makes their selection. This corresponds to the
second game above. Player 2’s will seek to maximize the payoff f(w, z) and so will choose
z ∈ Z to maximize f(w, z). Critically, Player 2’s choice z is allowed to depend on the choice w
made by Player 1 so the resulting payoff, which is supz∈Z f(w, z), will also depends on w, the
choice of the first player. Player 1 knows (or assumes) that player 2 will follow this strategy,
and so will choose w ∈ W to make this worst-case payoff to player 2 as small as possible. Thus
player 1 chooses

argminw∈W sup
z∈Z

f(w, z),

which results in the payoff
inf

w∈W
sup
z∈Z

f(w, z)

from player 1 to player 2. In this game, Player 2 has an informational advantage over player 1
because she makes her choice after observing the choice of Player 1.
Now suppose the order of play is reversed: player 2 must choose z ∈ Z first, and then player 1
chooses w ∈ W (with knowledge of z). Following a similar argument, if the players follow the
optimal strategy, player 2 should choose z ∈ Z to maximize infw∈W f(w, z), which results in
the payoff

sup
z∈Z

inf
w∈W

f(w, z)

from player 1 to player 2.
The max-min inequality states the (intuitively obvious) fact that it is better for a player to
go second, or more precisely, for a player to know their opponent’s choice before choosing. In
other words, the payoff to player 2 will be larger if player 1 must choose first. The optimal
duality gap for the problem is exactly equal to the advantage afforded to the player who goes
second. If strong duality holds – or equivalently, the saddle-point property holds – there is no
advantage to playing second. If (w⋆, z⋆) is a saddle-point for f (and W and Z), then it is called
a solution of the game.

4.2 Sion Mini-max Result

One of the most celebrated results in optimization is the Sion-Kakutani Theorem that allows
interchanging the order of minimization and maximization in a minimax problem.
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Theorem 4.2 (Sion-Kakutani). Let X ⊆ Rn and λ ⊆ Rm be convex and compact subsets
and let f : X×λ → R be a continuous function that is convex in x ∈ X for any fixed λ ∈ λ
and that is concave in λ ∈ λ for any fixed x ∈ X. Then,

min
x∈X

max
λ∈λ

f(x, λ) = max
λ∈λ

min
x∈X

f(x, λ).

We note that slight generalizations of this result are also possible. (λ only needs to be convex
– so no need for compactness – and f only needs to be lower semicontinuous and quasi-convex
on X and upper semicontinuous and quasi-concave on λ. We omit further details here.) A
proof is slightly outside the scope of these notes, but we direct the interested reader to Ben-Tal
and Nemirovski (2023) and Bertsekas (2009) for more details.

5 Optimality Conditions
We next discuss optimality conditions for optimization problems. We will be concerned with the
following primal optimization problem:

(P) minx f0(x)
fi(x) ≤ 0, i = 1, . . . ,m
hj(x) = 0, j = 1, . . . , s
x ∈ X.

(31)

The question we are interested in is the following: “Assume that we are given a feasible solution
x⋆ to (P). What are the conditions (necessary, sufficient, necessary and sufficient) for x⋆ to be
optimal?” We answer this question under the following assumptions on the problem primitives:

• x⋆ is an interior point of the domain of the problem X;

• The functions f , g1, . . . , gm and h1, . . . , hs are smooth at x⋆: at least once continuously
differentiable in a neighborhood of the point (for second-order conditions, we would need to
require more smoothness!)

Importantly, we stress that we are not going to impose structural convexity assumptions,
unless explicitly stated otherwise.

Before stating the conditions, we note that the only kinds of conditions that we should hope
for are necessary conditions for the optimality of x⋆ and sufficient conditions for the local
optimality of x⋆. In particular, we cannot possibly hope for global optimality conditions without
imposing some other global requirements (such as convexity).

Letting λi denote the dual variables for the inequality constraints fi(x) ≤ 0 and νj denote the
dual variables for the equality constraints hj(x) = 0, recall from the developments in the previous
section that if we have an optimal solution x⋆ for the primal (P) and an optimal solution λ⋆, ν⋆ for

18



its dual so that strong duality holds, this implies:

f0(x⋆) = g(λ⋆, ν⋆)

= inf
x∈X

[
f(x) +

m∑
i=1

λ⋆
i fi(x) +

s∑
j=1

ν⋆
j hj(x)

]

≤ f0(x⋆) +
m∑

i=1
λ⋆

i fi(x⋆)

≤ f0(x⋆),

The first inequality follows because x⋆ is feasible in (P) so fi(x⋆) ≤ 0 (we omit writing the term
+∑s

j=1 ν
⋆
j hj(x⋆), which is zero anyway) and the last inequality also uses that λ⋆ is feasible in (D),

so λ⋆ ≥ 0. But this implies that:

λ⋆
i · fi(x⋆) = 0, i = 1, . . . ,m. (32)

This condition, which we already encountered in linear optimization, is called complementary
slackness, and it can be expressed equivalently as

λ⋆
i > 0 ⇒ fi(x⋆) = 0 ⇔ fi(x⋆) < 0 ⇒ λ⋆

i = 0. (33)

These conditions will be very important as they will allow us to establish necessary (and sufficient)
optimality conditions for optimization problems.

5.1 Karush-Kuhn-Tucker (KKT) Necessary Optimality Conditions

Let x⋆ ∈ X be a point that in the domain for the primal (P) and let λ⋆ ∈ Rm be dual variables
corresponding to the inequality constraints and ν⋆ be dual variables for the equality constraints.
The Karush-Kuhn-Tucker (KKT) necessary conditions at x⋆ ∈ X are given by:

0 = ∇f0(x⋆) +
m∑

i=1
λ⋆

i · ∇fi(x⋆) +
s∑

j=1
ν⋆

j · ∇hj(x⋆), (“Stationarity”)

fi(x⋆) ≤ 0, i = 1, . . . ,m (“Primal Feasibility 1”)
hj(x⋆) = 0, i = 1, . . . , s, (“Primal Feasibility 2”)
λ⋆ ≥ 0 (“Dual Feasibility”)
λ⋆

i fi(x⋆) = 0, i = 1, . . . ,m (“Complementary Slackness”).

In this definition, we noted common names for each condition in quotes. The rationale for the
conditions should be clear from our previous developments involving the primal-dual.

To visualize these conditions, consider a case without equality constraints (s = 0). Note that
the Stationarity Condition (which also corresponds to the derivative of the Lagrangian vanishing)
together with the Complementarity Slackness condition (which states that λ⋆

i = 0 for any inequality
constraints fi(x) ≤ 0 that are not active) yield:

−∇f0(x⋆) =
∑

i:fi(x⋆)=0
λ⋆

i · ∇fi(x⋆).
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Figure 4: Illustration of KKT conditions. Here, the feasible set is the intersection of several in-
equality constraints fi(x) ≤ 0. At the optimal point x⋆, only f1(x) and f2(x) are active constraints.
The Stationarity Condition requires that the negative of gradient of the objective, −∇f0(x⋆), can
be expressed as a conic combination of the the gradients of all active constraints, i.e., ∇f1(x⋆) and
−∇f2(x⋆) here. (The set of all conic combinations of these gradients is denoted by NC(x⋆) and is
called the normal cone at x⋆.)

This means that at optimality, −∇f0(x⋆) can be written as a conic combination of the gradients of
all the constraints that are active at x⋆. The cone of all such directions is known as the normal
cone at x⋆ and it denoted by NC(x⋆). Note that NC(x⋆) contains all the directions d ∈ Rn that
“point away” from the feasible set, i.e., NC(x⋆) :=

{
d ∈ Rn : dT(y − x⋆) ≥ 0

}
.2 The geometric

intuition of these conditions is depicted in Figure 4, and should be reminiscent of the optimality
conditions we saw in linear optimization.

In some cases, the KKT conditions may fail to hold at optimality. Typically that happens
when the linearization of the constraints collapses. Consider the following example.

Example 5.1 (Failure of KKT Conditions.). Consider the optimization problem

min
x∈R

x

x3 ≥ 0.

In this example, f0(x) = x and f1(x) = −x3. The feasible set is [0,+∞) and the optimal
solution is x⋆ = 0. The KKT condition fails because ∇f0(x⋆) = 1 while ∇f1(x⋆) = 0, so there is no
λ ≥ 0 such that −∇f0(x⋆) = λ∇f1(x⋆). Note that in this case, we are not dealing with a convex
optimization problem!

Here is a more subtle example of the KKT condition failing, in which the constraint gradients
do not vanish.

2Equivalently, the directions in −NC(x⋆) allow moving from x⋆ while remaining inside the feasible set.
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Example 5.2 (Failure of KKT Conditions.). Consider the optimization problem

min
x,y∈R

− x

y − (1 − x)3 ≤ 0
x, y ≥ 0

Here, f0(x, y) := −x, f1(x, y) := y − (1 − x)3, f2(x, y) := −x and f3(x, y) := −y. The feasible
set is illustrated in Figure 5. At the optimal point (x⋆, y⋆) := (1, 0), the gradients of the objective

Figure 5: KKT Conditions Failing. (Figure not drawn to scale.)

and binding constraints f1 and f3 are

∇f0(x⋆, y⋆) =
(

−1
0

)
, ∇f1(x⋆, y⋆) =

(
0
1

)
, ∇f3(x⋆, y⋆) =

(
0

−1

)
.

It is clear that no Lagrange multipliers λ1, λ3 satisfy

−∇f0(x⋆, y⋆) = λ1∇f1(x⋆, y⋆) + λ3∇f3(x⋆, y⋆),

so the KKT conditions fail in this case.

The reason why the KKT conditions failed in the last example is because the linearization of
constraint f1 ≤ 0 around the optimal point (1, 0) is y ≤ 0, which is parallel to the existing constraint
y ≥ 0 and fails the capture the fact that x ≤ 1 on the feasible set.

Luckily, several constraint qualification conditions exist that make the KKT conditions
necessary for x⋆ to be locally optimal. We highlight some examples below. In all of these
conditions, x⋆ is the candidate point for which we want to check local optimality and we let I(x⋆) :=
{i ∈ {1, . . . ,m} : fi(x⋆) = 0} denote the set of indices of all active inequality constraints. We
restrict attention to cases where {fi}m

i=1 and {hj}s
j=1 are differentiable.

1. Affine constraints. If the feasible set is defined by linear constraints (i.e., all fi and hj are
affine functions), then no further constraint qualifications are necessary and the KKT conditions
are necessary for x⋆ to be locally optimal.
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2. Slater’s condition. This is the condition we are already familiar with, which we can relax
slightly by only making reference to active constraints. Specifically, the relaxed Slater’s condition
holds if:

• the functions fi appearing in active inequality constraints {fi : i ∈ I(x⋆)} are convex and
there exists a feasible point in the relative interior of the domain that is strictly feasible for
these constraints, i.e.,

∃x̄ ∈ rel int(X) such that fi(x̄) < 0 ∀i ∈ I(x⋆);

• all the functions {hj}j=1,...,s appearing in equality constraints are affine.

Naturally, if the Slater conditions hold for all inequality constraints in the problem – as we required
when discussing strong duality for convex optimization – then the Slater constraint qualification
conditions hold at any candidate point x̄ at which we are checking the KKT conditions.

3. Linearly independent gradients for active constraints. Suppose that the gradients of
all active constraints at x⋆ are linearly independent, i.e., the vectors:

{∇fj(x⋆) : j ∈ I(x⋆)} ∪ {∇hj(x⋆) : j = 1, . . . , s}

has linearly independent vectors. Then, the KKT conditions are necessary at x⋆.
A point x⋆ where the gradients of active constraints are linearly independent is also referred to as
a regular point. You may recall regular points from multivariate calculus, where regularity is a
necessary condition for the implicit function theorem to hold.

4. Mangasarian-Fromovitz. Suppose the gradients of all equality constraints

{∇hj(x⋆) : j = 1, . . . , r}

are linearly independent and there exists a vector d ∈ Rn such that

dT∇fi(x⋆) < 0, i ∈ I(x⋆), dT∇hj(x⋆) = 0, j = 1, . . . , s,

then the KKT conditions are necessary at x⋆.
As it turns out, these constraint qualification conditions satisfy a specific “pecking order,”

in the sense that some conditions are stronger and imply others. For instance, one can show
that condition (3) requiring linearly independent gradients implies the Mangasarian-Fromovitz
condition (4). In principle, even more relaxed conditions are possible; we refer the interested
reader to the lecture notes Burke (2012) and the article Peterson (1973) for a more thorough
overview. However, the most practical conditions to check are the Slater condition (when dealing
with a convex optimization problem) or the Mangasarian-Fromovitz condition for a more general
(smooth) non-linear optimization problem.

5.2 Second Order Necessary Optimality Conditions

Under additional smoothness assumptions on the objective and constraints, we can also state a set
of second-order optimality conditions that make use of Hessian information.
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Theorem 5.3 (Necessary Conditions). Consider problem (P) stated in (31) and assume that
x⋆ is a feasible solution and f0, f1, . . . , fm, h1, . . . , hs are twice continuously differentiable in a
neighbourhood of x⋆. Let I(x⋆) := {i ∈ {1, . . . ,m} : fi(x⋆) = 0} denote the indices of all active
inequality constraints at x⋆ and assume that x⋆ is regular, i.e., the gradients

{∇fj(x⋆) : j ∈ I(x⋆)} ∪ {∇hj(x⋆) : j = 1, . . . , s}

of all active constraints at x⋆ are linearly independent. Then, if x⋆ is locally optimal, there
exist unique Lagrange multipliers λ⋆

i ≥ 0 and ν⋆
j such that

(i) (λ⋆, ν⋆) certify that x⋆ is a KKT point of (P):

∇xL(x⋆;λ⋆, ν⋆) = ∇f0(x⋆) +
m∑

i=1
λ⋆

i ∇fi(x⋆) +
s∑

j=1
ν⋆

j ∇hj(x⋆) = 0 (34a)

λ⋆
i fi(x⋆) = 0, i = 1, . . . ,m (34b)

(ii) The Hessian ∇2
xL(x⋆;λ⋆, µ⋆) of L in x is positive semidefinite on the orthogonal comple-

ment M⋆ to the set of gradients of active constraints at x⋆:

dT ∇2
xL(x⋆;λ⋆, µ⋆) d ≥ 0 for any d ∈ M⋆

where M⋆ := {d | dT ∇fi(x⋆) = 0, ∀ i ∈ I(x⋆), dT ∇hj(x⋆) = 0, j = 1, . . . , s}.

The Second Order Necessary Optimality Conditions actually state some intuitive facts. To see
it, it first helps to develop an intuition for the subspace M⋆ involved in the necessary condition.
This is the subspace obtained by linearizing all the constraints that are active at x⋆, so the affine
space x⋆ + M⋆ is exactly a tangent plane to the surface S where all constraints active at x⋆ are
still active. Thus, directions d ∈ M⋆ are tangent to S at x⋆. When x⋆ is regular, moving forward
or backwards along any such direction d ∈ M⋆ allows us to stay “very close” to S. So when x∗ is
locally optimal, it must be that no direction from M∗ leads to a desired decrease of the objective.
Indeed, if such a direction d existed that, we could improve on x∗ by implementing a small step
along this tangent direction, which would improve the objective only by an infinitesimal shift of
second order.

In a similar fashion, we can also state a set of sufficient second-order conditions that would
guarantee that a point x⋆ is a local optimum.

Theorem 5.4 (Sufficient Conditions). Under the same premises as stated in Theorem 5.3,
assume that there exist Lagrange multipliers λ⋆

i ≥ 0 and ν⋆
j such that:

(i) (λ⋆, ν⋆) certify that x⋆ is a KKT point of (P), i.e., (34a) and (34b) hold.

(ii) The Hessian ∇2
xL(x⋆;λ⋆, µ⋆) of L in x is positive definite on the orthogonal comple-

ment M⋆⋆ to the set of gradients of equality constraints and active inequality constraints
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associated with positive Lagrange multipliers λ⋆
i :

dT∇2
xL(x⋆;λ⋆, µ⋆)d > 0 for any d ∈ M⋆⋆

where

M⋆⋆ := {d | dT∇fi(x⋆) = 0, ∀ i ∈ I(x⋆) : λ⋆
i > 0 and

dT∇hj(x⋆) = 0, j = 1, . . . , s}.

Then, x⋆ is locally optimal for (P).

Note that the sufficient condition involves a stronger requirement on the Hessian: it should be
positive definite in the subspace M⋆⋆.

We omit proofs for these reasons due to space limitations. The interested reader can refer to
Ben-Tal and Nemirovski (2023) or the book Borwein and Lewis (2006).

As we stated at the onset, for a general optimization problem that satisfies one
of the constraint qualification conditions, the KKT conditions are necessary/sufficient
for local optimality at x⋆. However, for a convex optimization problem, the KKT
conditions are necessary and sufficient for global optimality.

5.3 Examples

5.3.1 A Consumer’s Constrained Consumption Problem

Consider a consumer trying to maximize his utility function u(x) by choosing which bundle of
goods x ∈ R+

n to purchase. The goods have prices p > 0 and the consumer has a budget B > 0.
The consumer’s problem can be stated as:

maximize u(x)
such that pTx ≤ B

x ≥ 0,

where u(x) is a concave utility function.

Let us express the KKT conditions when the utility function u(x) is differentiable. We first
convert this into the following equivalent problem:

minimize − u(x)
(λ →) pTx ≤ B

(µ →) − x ≤ 0,

With λ ∈ R+, µ ∈ Rn
+ denoting the Lagrange multipliers, the Lagrangian becomes:

L(x, λ, µ) = −u(x) + λ(pTx−B) − xTµ.
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This is a convex optimization problem and the Slater condition is trivially satisfied (with a suffi-
ciently small choice x > 0). The KKT conditions are therefore necessary and sufficient for optimal-
ity. These conditions at a primal point x and dual point λ, µ can be written as:

0 = − ∂u

∂xi
+ λQi − µi, i = 1, . . . , n (“Stationarity”)

pTx ≤ B, x ≥ 0 (“Primal Feasibility”)
λ ≥ 0, µ ≥ 0 (“Dual Feasibility”)
λ · (pTx−B) = 0 (“Complementary Slackness” 1)
µi · xi = 0 (“Complementary Slackness” 2).

We distinguish two cases, depending on whether pTx < B holds.
Case 1. If the consumer’s budget constraint is not binding, pTx < B, then λ = 0 from the

complementary slackness condition, and we have
∂u

∂xi
= −µi.

Because for any xi > 0 we must have µi = 0, this implies that the optimal consumption bundle
satisfies:

∂u

∂xi
= 0 for any xi > 0.

In words, the consumer purchases the unconstrained optimal amount of each good i.
Case 2. If pTx = B, then it is possible to have λ = 0 or λ > 0. The former case would lead to

the same qualitative insights as Case 1. If λ > 0, then we have:
∂u

∂xi
= λQi for any xi > 0,

or equivalently,
∂u
∂xi

Qi
= λ for any xi > 0.

The quantity on the left has a very nice interpretation as the “bang-for-the-buck” for good i: it is
the marginal increase in utility if the consumer increased the consumption of the good by a small
amount δ (beyond the optimal consumption) , ∂u

∂xi
· δ, divided by the price of the extra purchase,

δQi. So the condition states a very well-known economic fact that when the consumer is budget-
constrained, the bang-for-the-buck for all the goods that are consumed (xi > 0) must be equal at
optimality.

Moreover, note that the stationarity condition also implies that for any i with xi > 0 and j
with xj = 0, we have:

∂u
∂xi

xi
= λ >

∂u
∂xj

xj
= λ− µj ,

so the bang-for-the-buck for goods that are consumed must be (weakly) larger than for goods that
are not consumed.
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6 Fenchel Duality
In this section we briefly sketch out the elegant and concise theory of Fenchel Duality, which can be
used to gain a deeper understanding of optimality conditions stated earlier as well as to appreciate
some important constructions in optimization.

We start by defining a central concept in convex optimization and convex optimization: the
conjugate of a function f .

Conjugate of a function
Let f : Rn → R. The function f∗ : Rn → R defined as

f∗(y) = sup
x∈dom(f)

{
yTx− f(x)

}
(35)

is called the conjugate of f .

The construction is depicted in Figure 6. The rationale behind the definition is to be able to
describe f in terms of the affine functions that are majorized by f , i.e., supporting hyperplanes
to epi(f). When f is a closed convex function that is also proper (i.e., does not take value −∞
anywhere), this description is actually accurate and the transformation is symmetric, i.e., f can be
recovered by taking the conjugate of its conjugate f∗. The conjugacy transformation thus provides
an alternative view of a convex function, which often reveals interesting properties and is useful for
analysis and computation.

Figure 6: Visualization of the conjugate function f∗(y) = supx∈dom(f)
{
yTx− f(x)

}
of a function f .

The crossing point of the vertical axis with the hyperplane with normal (−y, 1) that supports the
epigraph of f is exactly −f∗(y).

Note that regardless of the structure of f , the conjugate function f∗ is convex, because it is the
pointwise supremum of affine functions of y:

xTy − f(x) ∀x ∈ dom(f).
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6.1 Basic Examples

We present a few examples of conjugate functions.

Example 6.1. For f(x) = 0, the conjugate will depend on the relevant domain:

• If f : R → R, then f∗ : {0} → R and f∗(y) = 0.

• If f : R+ → R, then yx is unbounded for y > 0 and for y < 0, it achieves its maximum
for x = 0. We then have f∗ : (−∞, 0] → R and f∗(y) = 0.

• If f : [−1, 1] → R, then yx achieves its maximum for x = sign(y) and we have f∗ : R → R
and f∗(y) = |y|.

• If f : [0, 1] → R, then for y < 0, the function yx achieves its maximum value of 0 at
x = 0, and for y ≥ 0 it achieves its maximum of y at x = 1. So we have f∗ : R → R and
f∗(y) = y+.

Example 6.2. Consider f : R → R with f(x) = aTx + b. Note that yTx − aTx − b is finite if
and only if y = a, in which case it equals −b. Therefore f∗ : {a} → R and f∗(a) = −b.

Example 6.3. Consider f : R → R with f(x) = |x|. Note that yTx− |x| has a finite supremum
0 if and only if y ∈ [−1, 1]. Therefore, f∗ : [−1, 1] → R and f∗(y) = 0.

Example 6.4. Consider f : (0,∞) → R with f(x) = − log x. The function yx + log x is
unbounded above if y ≥ 0 and reaches its maximum at x = −1/y otherwise. Therefore,
f∗ : (−∞, 0) → R and f∗(y) = − log(−y) − 1 for y < 0.

Example 6.5. Consider f : R → R, f(x) = ex. Then, yx − ex is unbounded if y < 0. For
y > 0, yx− ex reaches its maximum at x = log y, so we have f∗(y) = y log y − y. For y = 0,

f∗(y) = sup
x

−ex = 0.

In summary, f∗ : R+ → R and

f∗(y) =
{
y log y − y y > 0
0 y = 0.

(36)

Example 6.6. Consider f : [0,∞) → R, f(x) = x log x (with the convention limx→0 f(x) = 0).
The function yx − x log x is bounded above on [0,∞) for all y and attains its maximum at
x = ey−1. Hence f∗ : R → R and f∗(y) = ey−1.
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Example 6.7. Consider f(x) = 1/x defined on 0,∞. For y > 0, yx−1/x is unbounded above.
For y = 0 this function has supremum 0; for y < 0 the supremum is attained at x = (−y)−1/2.
Therefore f∗ : [0,∞) → R and f∗(y) = −2(−y)1/2.

Example 6.8. Consider f : Rn → R, f(x) = 1
2x

TQx, where Q ≻ 0. The function yTx− 1
2x

TQx
attains its maximum at x = Q−1y for any y, so f∗ : Rn → R and f∗(y) = 1

2y
TQ−1y.

Example 6.9. Let IS be the indicator function of a (not necessarily convex) set S ⊂ Rn, i.e.,
IS(x) = 0 on dom IS = S and IS(x) = +∞ otherwise. Its conjugate is

I∗
S(y) = sup

x∈S
yTx,

which is the support function of the set S.

6.2 Conjugate of Conjugate and Convex Envelope

For a function f : Rn → R, consider the conjugate of the conjugate function f∗ (or the double
conjugate) denoted by f∗∗ and given by

f∗∗(x) = sup
y∈Rn

{yTx− f∗(y)}, x ∈ Rn.

The next proposition shows that f∗∗ is the convex closure or convex envelope of f , i.e., the
function that has as epigraph the closure of the convex hull of epi(f). In particular, the last part
of the result shows that under a few mild technical conditions, f∗∗ = f for a convex function f .

Theorem 6.10. Let f : Rn → R be a function such that epi(f) is a closed set and let f∗∗ be
the double-conjugate. Then,

a) We have f(x) ≥ f∗∗(x), forall x ∈ Rn.

b) If f is convex, then f(x) = f∗∗(x), ∀x ∈ Rn.

c) f∗∗(x) equals the convex envelope of f , i.e., the largest convex function g(x) satisfying
g(x) ≤ f(x) for any x ∈ R.

For a proof, we refer the interested reader can refer to Bertsekas (2009).

This result has important implications, albeit more for theory than practice! Specifically, it
can be shown that the optimal value in the problem of minimizing an arbitrary (i.e., potentially
non-convex) closed function f – if finite – is the same as the optimal value when minimizing the
convex envelope of f . Therefore, IF we had access to the convex function f∗∗, we could solve a
convex optimization problem to determine the optimal value of any function f . Obviously, the
challenge here lies gaining access to f∗∗: in general, that function is extremely difficult to compute
or even approximate for arbitrary functions f !
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6.3 Important Inequalities

An immediate consequence of the definition of the conjugate is the following inequality, which is
called Fenchel (or Fenchel-Young) inequality:

Fenchel-Young Inequality

f∗(y) ≥ yTx− f(x).

More importantly, the conjugates of functions allow us to restate the strong duality result in a
very concise and illuminating form. To appreciate this, consider the following optimization problem:

minimize f1(x) + f2(x)
subject to x ∈ X1 ∩X2

where fi : Rn → R and Xi ⊆ Rn for i = 1, 2. Let’s assume that the optimal value is finite and
equal to p⋆. Then, the problem can be converted into:

minimize f1(y) + f2(z)
subject to y = z, y ∈ X1, z ∈ X2.

Moreover, we can dualize the constraint z = y and construct a dual lower bound. Specifically, for
any λ ∈ Rn, define the following functions:

g(λ) = inf
y∈X1,z∈X2

{f1(y) + f2(z) + (z − y)Tλ}

= − sup
y∈X1

{yTλ− f1(y)} + inf
z∈X2

{zTλ+ f2(z)}

= − sup
y∈X1

{yTλ− f1(y)} − sup
z∈X2

{−zTλ− f2(z)}

:= −g1(λ) − g2(−λ),

where g1(λ) is the conjugate of f1 and g2(λ) is the conjugate of f2.
Clearly, for any λ, g(λ) is a lower bound on p⋆, and we can form the following dual problem:

max
λ∈Rn

{−g1(λ) − g2(−λ)},

which is actually equivalent to the problem

min
λ∈Rn

{g1(λ) + g2(−λ)},

which has a very similar form to the primal problem.3
Then, the following main result holds.

3This could be made to look even more symmetric by considering instead a function f1(x) − f2(x) and defining
the convex and concave conjugates. We preferred to not introduce additional notation and instead obtain the slight
asymmetry in the definitions of the primal and dual.
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Fenchel Duality
Assume that f1 and f2 are convex and either (i) rel int(dom(f1)) ∩ rel int(dom(f2) ̸= ∅ or (ii)
dom(fi) are polyhedral and fi can be extended to a real-valued convex function over Rn for
i = 1, 2. Then, there exists λ⋆ ∈ Rn such that

p⋆ = g(λ⋆)

and strong duality holds.

For a proof, see Bertsekas (2009) or Borwein and Lewis (2006).

This result is essentially a restatement of the strong duality result for convex optimization.
It is worth noting that condition (i) is simply a restatement of the Slater condition in this new
framework (the Slater condition has been replaced with the existence of a point x in the relative
interior of the domains of f1 and f2), while condition (ii) is primarily concerned with the polyhedral
case. So the theorem is simply reinterpreting – rather than extending or generalizing – the previous
results.
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