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In this lecture, we consider the following type of optimization problems:

min cTx + dTy

Ax + By = b

x, y ≥ 0
x integer

We call this problem a mixed integer programming problem. If there are no continuous problem,
then we simply call this an integer program (IP). Moreover, if x is further constrained to take value
in {0, 1}n, we call this a zero-one or binary optimization problem. As we will soon see, these
problems offer a very powerful modeling framework, but the downside is that they are generally
hard to solve to optimality. We then discuss a few special cases when these problems are solvable
(essentially, as easy as LPs) and we highlight some of the algorithms used to tackle these problems
in full generality.

1 Modeling Techniques
Integer programming offers a very rich modeling framework. Here are some examples to illustrate.

1.1 Binary choice

A binary variable can represent one of two alternatives. For instance, consider the classical knap-
sack problem.

Example 1.1 (The zero-one knapsack problem). We are given n items. The j-th item has
weight wj and its value/reward is rj . Given a bound K on the weight that can be carried in a
knapsack, we would like to select items to maximize the total value.

To model this problem, we define a binary variable xj which is 1 if item j is chosen, and 0
otherwise. The problem can then be formulated as follows:

maximize
n∑

j=1
rjxj

subject to
n∑

j=1
wjxj ≤ K

xj ∈ {0, 1}, j = 1, . . . , n.
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1.2 Logical constraints

We already saw several examples of logical constraints in our third class. Here, we briefly remind
you of some of the basic building blocks. Suppose that we have activities/projects A and B and we
use binary variables with the same name to indicate whether each activity is conducted; so A = 1
if and only if activity A is done. Then:

• to impose the condition: “if activity A is done, then activity B should also be done,” we
should add the constraint A ≤ B. This exactly implements the logical “or” between the
two projects: note that the condition that A or B should be done means A + B ≥ 1, which
is exactly equivalent to our constraint.

• To implement the logical not, we can use 1 − A. That is, A is not done if and only if
1 − A = 1.

• To implement the logical and – for instance, to create the binary variable Z = A · B – we
can add the constraints:

Z ≤ X, Z ≤ Y, Z ≥ X + Y − 1.

Moreover, if x is an n-dimensional vector of continuous or discrete decisions and a ∈ Rn, b ∈ R,
to implement the condition that

Y = 1 ⇔ aTx + b ≥ 0,

we should add the two constraints:

aTx + b ≥ m · (1 − Y )
aTx + b + ϵ ≤ (M + ϵ) · Y,

where m and M are the smallest and largest value, respectively, that aTx + b can take over any
feasible x, and ϵ is a very small tolerance parameter. The parameter arises because with continuous
variables x, it is impossible to enforce precisely a strict inequality. However, if x ∈ Zn, the epsilon
can be replaced with a finite value to obtain an exact reformulation.

Modern modeling languages make it very easy to encode a logical relationship. For instance, in
Gurobipy, if y is defined as a binary variable, to encode the logical implication “y = 1 implies that
the linear constraint expression(x) ≥ 0 holds (where expression(x) is a Gurobi linear expression
of the decision variables x), one can use: model.addConstr( (y==1) » (expression(x) ≥ 0).
See this link for details.

Facility Location. As a classical example of logical constraints in practice, consider the facility
location problem where we have n potential locations and m clients who need service. There is
a fixed cost cj for opening a facility at location j and a cost dij for serving client i from facility
j. The goal is to select a set of facility locations and assign each client to one of the facilities at
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minimum cost. (For a visualization, see Figure 1.)

min
n∑

j=1
cjyj +

m∑
i=1

n∑
j=1

dijxij

n∑
j=1

xij = 1

xij ≤ yj

xij , yj ∈ {0, 1}

Here, the equality constraint ∑n
j=1 xij = 1 model the requirement that each client i is exactly

matched with one of the facilities j, and xij ≤ yj ensures that clients can only be matched with
open facilities.

Figure 1: A facility location problem. Black squares denote potential locations for facilities, circles
denote customers, and the cost function is Euclidean distance. The color-coding denotes the match
between the three open facility and the customers.

1.3 Restricted range of values

Suppose we need to restrict a variable x to take values in a set {a1, . . . , am}. This can be achieved
with the following constraints:

x =
m∑

j=1
ajyj ,

m∑
j=1

yj = 1, yj ∈ {0, 1}.

1.4 Arbitrary piecewise linear cost functions

Binary variables allow reformulating an arbitrary piecewise-linear cost function. Suppose that
a1 < a2 < · · · < ak and that we have a continuous1 piecewise linear function f(x) specified by

1Discontinuous functions can also be readily accommodated by introducing additional constraints.
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the points (ai, f(ai)) for i = 1, . . . , k, defined on the interval [a1, ak] (see Figure 2). Then, any
x ∈ [a1, ak] can be expressed in the form

x =
k∑

i=1
λiai,

where λ1, . . . , λk are nonnegative scalars that sum to one.

Figure 2: A piecewise linear cost function.

Importantly, although the choice of coefficients λ1, . . . , λk used to represent a particular x is
not unique, this becomes unique if we require that at most two consecutive coefficients λi can
be nonzero. In this case, any x ∈ [ai, ai+1] is represented uniquely as x = λiai + λi+1ai+1, with
λi + λi+1 = 1, and

f(x) =
k∑

i=1
λif(ai).

We also need to model the additional constraint that at most two consecutive coefficients λi are
nonzero. To this effect, we consider a binary variable yi, i = 1, . . . , k − 1, which can be equal to 1
only if ai ≤ x ≤ ai+1, and must be 0 otherwise. The problem is then formulated as the following
mixed integer programming problem:

minimize
k∑

i=1
λif(ai)

subject to
k∑

i=1
λi = 1,

λ1 ≤ y1,

λi ≤ yi−1 + yi, ∀i = 2, . . . , k − 1,

λk ≤ yk−1,

k−1∑
i=1

yi = 1,

λi ≥ 0, yi ∈ {0, 1}, ∀i.
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Notice that if yj = 1, then λi = 0 for i different than j or j + 1.
Modern modeling languages make it a lot easier to encode such piecewise linear functions. For
instance, in the Gurobipy interface, one can use the function addGenConstrPWL(x,y,xpnts,ypnts)
to encode a the relationship x = f(y) where x and y are Gurobi variables, and the piecewise linear
function f is specified through the breakpoints xpnts, ypnts. See this link for details.

1.5 Set covering, set packing, and set partitioning problems

Consider a set of ground objects M = {1, . . . , m} and let M1, M2, . . . , Mn be a given collection of
subsets of M . We are also given a weight cj for each set Mj in the collection. (Depending on the
application, we may want more or less weight!)
Set covering. In the set covering problem, we seek a collection of sets Mj so that their union
includes (i.e., covers) M and has minimum weight. To capture this mathematically, define an
incidence matrix A with one row for each ground object i = 1, . . . , m and one column for each
set Mj , j = 1, . . . , n and such that Ai,j = 1 if i ∈ Mj and Ai,j = 0 otherwise. The set cover problem
is then:

minimizex wTx

Ax ≥ e

x ∈ {0, 1}n.

The facility location example is a type of covering problem (customers must be covered from the
open locations) and the ambulance placement problem you saw in the first homework is another
example. There are many others in practice: crew scheduling in public transportation (where the
elements of M are specific shifts or bus routes to cover and the sets Mj denote the ability/availability
of each driver j), sensor placement (elements are locations that require sensing and each set Mj

corresponds to a sensor placement choice that covers some locations), etc.
Set packing. In the set packing problem, we try to include as many disjoint sets Mj as possible
in order to maximize the weight of the included elements. Mathematically, with the same incidence
matrix A as above, the set packing problem is then:

maximizex wTx

Ax ≤ e

x ∈ {0, 1}n.

Again, there are many practical examples. Consider flight crew scheduling, where an airline needs
to assign flight crews to flights, but a crew cannot be assigned to overlapping flight schedules (e.g.,
two flights departing at the same time). The elements i ∈ M are the flights and each set Mj

represents the flights that a crew can cover based on availability. For another example, consider
a logistics company that needs to allocate containers to ships, but each ship has limited capacity.
Different shipments may overlap in terms of size and weight, and only disjoint combinations of
shipments can be placed on a single ship. The elements i ∈ M would be the shipments that need
to be loaded, and each set Mj represents a collection of shipments that fit within the capacity of a
ship without overlapping in size and weight. (The airline revenue management problem was also a
type of packing problem!)
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Set partitioning. In a set partitioning problem, we seek sets Mj that form a partition of M ,
i.e., they are disjoint and they cover M . Both maximization and minimization versions are possible:

maximizex wTx

Ax = e

x ∈ {0, 1}n.

1.6 Matching Problems

Matching problems are among the most ubiquitous in practice: riders being matched with drivers
(in ride-sharing platforms), patients awaiting for a transplant being matched with an organ available
for transplantation, etc.

To formulate a matching problem, consider a set U of tasks that must be completed and a set
V of persons available to complete the tasks. Each task can be assigned to at most one person and
each person is only able to complete only some of the tasks (e.g., due to skills). If task i ∈ U is
assigned to person j ∈ V , there is a reward of wij . A matching is an assignment of tasks to persons
so that each task is done by at most one person and each person works on at most one task, and the
goal is to find a matching that maximizes the total reward. We represent the matching abstractly
through an undirected, bipartite graph G = (N , E) where the set of nodes N is partitioned into the
two sets U, V (N = U ∪ V, U ∩ V = ∅), nodes i ∈ U denote tasks, nodes j ∈ V denote persons, and
an edge {i, j} ∈ E with i ∈ U and j ∈ V indicates that j is able to complete task i. (See Figure 3
for a visualization.)

Figure 3: A maximum weight matching problem.

With decisions xe ∈ {0, 1} denoting whether edge e = {i, j} is selected – meaning task i is
assigned to person j – the maximum weight matching problem is:

maximize
∑
e∈E

wexe

subject to
∑

e∈δ(i)
xe ≤ 1, ∀ i ∈ N,

xe ∈ {0, 1},

where δ(i) := {e ∈ E : e = {i, j} for some j ∈ N} captures all edges incident to node i.
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Other variations of this problem are possible. For instance, you may encounter matching
problems that involve minimizing a cost and subject to a constraint that one side has to be
matched fully (e.g., all the jobs must be completed), in which case the constraints would become∑

e∈δ(i) xe ≥ 1, ∀ i ∈ U . It is also common to consider a perfect matching, which is one where
there is no unmatched node in the graph. (This is only possible in bipartite graphs with |U | = |V |,
and then the constraints would read ∑e∈δ(i) xe = 1 for any i.) Lastly, matching problems can be
formulated in more general graphs rather than the bipartite examples we considered.

1.7 The minimum spanning tree problem

Let G = (N , E) be an undirected graph with node set N (|N | = n) and edge set E (|E| = m).
Every edge e ∈ E has an associated cost ce. We consider the problem of finding the minimum
spanning tree (MST), i.e., a subset of the edges that connect all the nodes in N at minimum
cost. To formulate the problem, we define a variable xe for each e ∈ E that is equal to 1 if edge e
is included in the tree and zero otherwise.

For this problem we actually consider two distinct formulations. The first is based on the idea
that a spanning tree on n nodes should be a connected graph containing n − 1 edges. To have
n − 1 edges, the following constraint must be satisfied:∑

e∈E
xe = n − 1.

For the tree to be connected, any subset of nodes S ⊂ N (S ̸= ∅) should be connected with nodes
in N \ S through at least one edge. So if we define the cutset δ(S):

δ(S) :=
{
{i, j} : i ∈ S, j /∈ S}, (1)

we can provide the following cutset formulation for the MST problem:

(Cutset MST)

minimize
∑
e∈E

cexe∑
e∈E

xe = n − 1,

∑
e∈δ(S)

xe ≥ 1, S ⊂ N, S ̸= ∅

xe ∈ {0, 1}.

(2)

Note that the cutset formulation involves an exponential number of constraints, one for each subset
S ⊂ N , S ̸= ∅.

An alternative – and equivalent – definition of a tree is based on the idea that a tree on n nodes
should have exactly n − 1 edges and no cycles. It can be shown that the tree is guaranteed to not
contain a cycle if for any nonempty set S ⊂ N , the number of edges with both endpoints in S is
less than or equal to |S| − 1. For any S ⊂ N , we define

E(S) =
{
{i, j} ∈ E : i, j ∈ S

}
, (3)

and we can express these constraints as:∑
e∈E(S)

xe ≤ |S| − 1, S ⊂ N, S ̸= ∅, N.
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This leads to the following IP formulation of the MST problem:

(Subtour-elimination MST)

minimize
∑
e∈E

cexe∑
e∈E

xe = n − 1,

∑
e∈E(S)

xe ≤ |S| − 1, S ⊂ N, S ̸= ∅, N,

xe ∈ {0, 1}.

(4)

This is called the subtour elimination formulation because it contains constraints that eliminate
all subtours (cycles over subsets of vertices). Note that this also involves an exponential number of
constraints.

The two formulations – cutset and subtour elimination – can be visualized in Figure 4.

Figure 4: Formulation for the Minimum Spanning Tree Problem. The initial graph G = (N , E) is
depicted in (a). Panel (b) shows a choice of edges that satisfies ∑e∈E xe = n − 1 but is not a valid
tree. Note that the cutset formulation would rule this out because the subset of nodes S = {1, 2, 3}
is not connected with nodes N \ S, i.e., δ(S) = 0. The subtour elimination formulation would
also rule this out because ∑e∈E(S) xe = |S| > |S| − 1.

1.8 Traveling salesperson problem

Given an undirected graph G = (N , E) and cost ce for each edge, the objective is to find a tour (i.e.
a cycle that visits each node exactly once) with minimum cost. To model this problem, we again use
a variable xe to denote whether an edge belongs to the tour. Mirroring the MST problem, the TSP
also admits two formulations – a cutset formulation and a subtour elimination formulation –
as follows.

(Cutset TSP)

minimize
∑
e∈

cexe∑
e∈δ({i})

xe = 2, ∀i ∈ N

∑
e∈δ(S)

xe ≥ 2, ∀S ⊂ N, S ̸= ∅.

(5)
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Note that this is slightly different than the cutset MST formulation. In the cutset TSP formulation,
any node i should have exactly one edge coming into it and one edge leaving it and any
nontrivial subset of nodes S (S ̸= ∅, N) should have at least two edges joining S with Nset \ S.
This is because in TSP, we are interested in a tour, whereas in the MST we wanted a tree (which
should be free of tours!)

The following formulation is also valid for the TSP (we omit the objective):

(Subtour-elimination TSP)
∑

e∈δ({i})
xe = 2, ∀i ∈ N

∑
e∈E(S)

xe ≤ |S| − 1, ∀S ⊂ N, S ̸= ∅
(6)

The key difference with the MST formulation lies again in the first set of constraints.
The two formulations are depicted in Figure 5.

Figure 5: Formulation for Traveling Salesman Problem (TSP). The initial graph G = (N , E) is
depicted in (a). Panel (b) shows a choice of edges that satisfies ∑e∈δ(i) xe = 2 for any i ∈ N ,
but is not a valid tour. Note that the cutset formulation rules this out because the subset of
nodes S = {1, 2, 3} is not connected with nodes N \ S, i.e., δ(S) = 0. The subtour elimination
formulation would also rule this out because ∑e∈E(S) xe = |S| > |S| − 1.

2 The Bad News First
Unfortunately, linear optimization over integers is significantly harder than over continuous
variables. The following examples illustrate some of the challenges.

Example 2.1 (Solution Not Attained). Consider the optimization problem:

sup
x,y

x +
√

2y

x +
√

2y ≤ 1
2

x, y ∈ Z.
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The optimal value is not attained.

You can probably quickly see that the optimal value in this problem is 1
2 and it would be

achieved with any choice of x and y such that x+
√

2y = 1
2 . But unfortunately, no integer values of

x, y would ever satisfy this with equality. Note that this problem would never arise with continuous
x, y, where the optimal value would be trivially achieved.

Example 2.2 (No Strong Duality). Consider the following pair of optimization programs:

(P) min x

2x = 1
x ≥ 0

(D) max
p

p

2p ≤ 1

With x ∈ R and p ∈ R, the problems constitute a primal-dual pair; both are feasible and the
optimal value (for each) is 1

2 . With x ∈ Z and p ∈ Z, problem (P) does not have any feasible
solution, but problem (D) is feasible and has optimal value 0.

This example shows that strong duality fails with discrete variables: we have an optimization
problem that has a finite optimal value (the dual (D)) but its dual is infeasible. (It is easy to
construct examples where the mirroring situation also happens, i.e., the primal minimization has
a finite optimal value but the dual maximization problem is infeasible).

In fact, IPs are – in theory and practice – significantly more difficult than LPs.

Theorem 2.3. Given a matrix A ∈ Qm×n and a vector b ∈ Qm, the problem: “does Ax ≤ b
have an integral solution x” is NP-complete.

The theorem states that the “feasibility problem” in integer programming is already NP-
complete, which means it is the hardest type of problem in NP. (We will not be discussing complexity
results too much in this class, but as a quick reminder, problems in NP are problems that admit a
polynomial-time verification of a YES instance. For instance, in our IP feasibility problem, if we
are given an x that is actually feasible, it is easy to verify whether it works – we just need to check
the constraints!) For a proof of the result, see Theorem 18.1 in Schrijver (1997).

3 Linear Relaxation and Strength of IP Formulations
Despite these negative results, a substantial body of theory and very scalable algorithms have been
developed to solve IPs. In the subsequent discussion, we focus on optimization problems with
rational entries: A ∈ Qm×n, b ∈ Qm, c ∈ Qn, and we assume that the feasible set of the IPs of
interest is bounded. Rational entries are needed both for theoretical purposes (e.g., to ensure
that optimal solutions exist) but also for the purely practical necessity of representing optimization
problems on computers with finite memory. Considering bounded feasible sets only simplifies a
few statements, but is not really needed for any of the theory. (In practice, this is not a terrible
assumption anyway because we rarely deal with optimization problems that are truly unbounded!)
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Let us start in the same way we started with linear optimization, and consider the problem
of finding a good lower bound for an IP. Clearly, we could obtain a bound if we relaxed the
integrality requirements. The following definition allows us to formalize this.

Definition 3.1 (LP relaxation). Given the generic integer program:a

min cTx + dTy

Ax + By = b

x, y ≥ 0
x ∈ {0, 1}n1 , y ∈ Zn2 ,

its linear programming relaxation is obtained by replacing the requirement x ∈ {0, 1}n1 with
x ∈ [0, 1]n1 and replacing the requirement y ∈ Zn2 with y ∈ Rn2 .

aA similar definition also applies to mixed-integer problems. In that case, restrictions on any continuous
variables would remain unchanged.

The LP relaxation entails changing the binary requirement on x into a (continuous) restriction
to the interval [0, 1] and removing the integrality requirement on y. The feasible set of the original
IP is therefore contained in the feasible set of its LP relaxation (which also justifies the name!). The
following observation is immediate. The optimal value of the LP relaxation to an IP provides a
lower bound on the optimal value of the IP. Moreover, if the optimal solution to the LP relaxation
is feasible for the original IP, then that solution is optimal for the IP.

In practice, the LP relaxation could be quite strong but also quite weak, and critically, this
depends on the formulation of the IP! To appreciate this point, let us consider again some of
our earlier motivating examples.

3.1 Strength of IP Formulations in Our Examples

3.1.1 Facility Location.

In §1.2, we presented an IP formulation for the facility location problem. For convenience, we
replicate it here (omitting the objective) and we also introduce a new formulation for the feasible
set that we refer to as the aggregate facility location (AFL) formulation:

(FL)
n∑

j=1
xij = 1, i = 1, . . . , m

xij ≤ yj , i = 1, . . . , m, j = 1, . . . , n

xij , yj ∈ {0, 1}

(AFL)
n∑

j=1
xij = 1, i = 1, . . . , m

m∑
i=1

xij ≤ myj , j = 1, . . . , n

xij , yj ∈ {0, 1}.

The main difference is that (AFL) replaces the constraints xij ≤ yj in (FL) with the constraints∑m
i=1 xij ≤ myj . Because the latter constraint forces xij to be 0 whenever yj = 0 but allows xij to

be 1 if yj = 1, it is a valid reformulation. So the two formulations result in the same feasible
set of integer points x, y and therefore also the same optimal solutions and optimal costs.
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On first glance, the (AFL) formulation might seem superior because it has m + n constraints,
whereas the (FL) formulation has m + m · n constraints.

But consider their corresponding LP relaxations. We define the following two polyhedra, which
are the feasible sets of the two relaxations:

PFL =

(x, y) :
n∑

j=1
xij = 1, ∀i, xij ≤ yj , ∀i, j, 0 ≤ xij ≤ 1, 0 ≤ yj ≤ 1


PAFL =

(x, y) :
n∑

j=1
xij = 1, ∀i,

m∑
i=1

xij ≤ m · yj , ∀j, 0 ≤ xij ≤ 1, 0 ≤ yj ≤ 1


Clearly, PFL ⊆ PAFL and the inclusion can actually be strict. In other words, the feasible set of the
LP relaxation for formulation (FL) is closer to the set of integer solutions than the LP relaxation
of formulation (AFL). The situation corresponds visually to Figure 6.

Figure 6: The feasible sets PFL and PAFL for the two LP relaxations for the facility location
problem. Note that the feasible points T for the IP (and their convex hull) are the only integer
points contained in both PFL and PAFL, but the (FL) formulation provides a tighter relaxation
than the (AFL) formulation.

So if ZIP is the optimal cost of the facility location IP and ZFL and ZAFL are the optimal costs
of the two LP relaxations, we obtain that:

ZAFL ≤ ZFL ≤ ZIP,

so (FL) provides a better (i.e., higher) lower bound on optimal cost than (AFL).
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3.1.2 Minimum Spanning Tree Revisited

Recall the minimum spanning tree (MST) construction and the two formulations – cutset and
subtour-elimination – which we replicate below for convenience.

(Cutset MST)∑
e∈E

xe = n − 1,

∑
e∈δ(S)

xe ≥ 1, S ⊂ N , S ̸= ∅

xe ∈ {0, 1}

(Subtour-elimination MST)∑
e∈E

xe = n − 1,

∑
e∈E(S)

xe ≤ |S| − 1, S ⊂ N , S ̸= ∅,

xe ∈ {0, 1}.

Theorem 3.2. With Pcut and Psub denoting the feasible sets of the two LP relaxations,
i) Psub ⊆ Pcut and examples exist where Psub ⊂ Pcut.
ii) Pcut can have fractional extreme points.

Proof. a) For any set S of nodes, we have

E = E(S) ∪ δ(S) ∪ E(N \ S).

Therefore, ∑
e∈E(S)

xe +
∑

e∈δ(S)
xe +

∑
e∈E(N \S)

xe =
∑
e∈E

xe.

For x ∈ Psub, and for S ̸= ∅, N , we have ∑
e∈E(S)

xe ≤ |S| − 1,

and ∑
e∈E(N \S)

xe ≤ |N \ S| − 1.

Because ∑
e∈E

xe = n − 1,

we obtain that ∑
e∈δ(S)

xe ≥ 1,

and therefore x ∈ Pcut.

b) We refer the interested reader to Bertsimas and Tsitsiklis (1997) for an example.
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3.1.3 Traveling Salesperson Problem Revisited

Lastly, recall the cutset and subtour-elimination formulations for the TSP.

(Cutset TSP) (Subtour-elimination TSP)∑
e∈δ({i})

xe = 2, ∀i ∈ N∑
e∈δ(S)

xe ≥ 2, ∀S ⊂ N, S ̸= ∅

∑
e∈δ({i})

xe = 2, ∀i ∈ N∑
e∈E(S)

xe ≤ |S| − 1, ∀S ⊂ N, S ̸= ∅.

Letting PTScut and PTSsub be the polyhedra corresponding to the LP relaxations of these two
formulations, it turns out that the two formulations are equally strong, i.e., PTScut = PTSsub (see
Bertsimas and Weismantel (2005) and Bertsimas and Tsitsiklis (1997) for proofs.)

3.2 Strength of IP Formulation

These examples show that different formulations of the IP could result in different LP relaxations
and therefore different lower bounds on the IP’s optimal value. Because we no longer have strong
duality, the quality of the lower bounds will be critical when solving IPs, so it is important to
understand what makes some formulations better than others – and also consider what an “ideal”
formulation could look like.

To understand this, let T denote all the feasible points to an IP, define

conv(T ) =
{∑

x∈T

λx · x : λ ≥ 0, eTλ = 1
}

as their convex hull, and let P denote the feasible (polyhedral) region of an LP relaxation to our
IP. Because we assumed that the feasible set for the IP is bounded, the set T is finite and conv(T )
is a polyhedral set! Then, we clearly have (see Figure 7 for a visualization):

T ⊆ conv(T ) ⊆ P.

This shows that the ideal LP relaxation would be one that exactly corresponds to conv(T )! Put
differently, if we had access to an explicit representation of conv(T ) – for instance, as an inequality
description conv(T ) = {x : Dx ≤ d} – then we could immediately solve our IP by solving a linear
program on the polyhedral set conv(T ).

We highlight some important take-aways, which we summarize in the following remarks.
Remark 3.3 (Quality of formulations). The quality of a formulation for an IP with feasible set
T can be judged by how closely its LP relaxation approximates conv(T ). In particular, for two
formulations A and B with the same feasible set of integer points and with PA and PB denoting
the feasible sets of their LP relaxations, A is said to be stronger (i.e., results in an improved lower
bound) than B if PA ⊂ PB.
Remark 3.4 (Models with more constraints). Constraints play a more subtle role in an IP formu-
lation than in an LP formulation. Whereas in an LP, formulations with more constraints should be
avoided2, a valid IP formulation with more constraints is typically stronger. Adding more (valid)

2For LPs, introducing constraints increases the problem size and also introduces degeneracy, which can complicate
algorithms like simplex.
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Figure 7: (a) Depicts the feasible set of the LP relaxation – the polyhedron P – and the set T of
all the integer points in P . (b) Depicts the convex hull of the integer points, conv(T ). The optimal
value for the IP is same as the optimal value over the set conv(T ).

constraints in an IP formulation thus involves a trade-off between the strength and the and the size
of the formulation.

The results in this section will lead us in two different directions. §4 examines what types of
IP formulations are “ideal,” meaning they result in LP relaxations that exactly correspond to the
convex hull of all integer feasible solutions. When that is not possible, §6 shows how to add valid
cuts, which are linear inequalities that remove fractional points from the feasible set of the LP
relaxation without removing any integer points.

4 Ideal Formulations With Total Unimodularity
This section examines the first set of conditions that guarantee an ideal IP formulation, i.e., one
where the LP relaxation’s feasible region would have only integral extreme points.

Let F = {x ∈ Zn
+ | Ax ≤ b} be the set of integer points for an IP formulation, where A ∈ Zm×n

and b ∈ Zm,3 and let P denote the feasible set of its LP relaxation:

P = {x ∈ Rn
+ | Ax ≤ b}.

Our goal is to identify conditions on the matrix A such that P is integral, i.e., P = conv(F). We
start by recalling Cramer’s rule.

Proposition 4.1 (Cramer’s Rule). Let A ∈ Rn×n be a nonsingular matrix. For b ∈ Rn,

Ax = b =⇒ x = A−1b =⇒ xi = det(Ai)
det(A) , ∀i,

3The restriction to integer matrices is without loss of generality here: if the entries were rational, we could multiply
all the equations by the least common multiple of (the absolute values of) all denominators.
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where Ai is the matrix with columns Ai
j = Aj for all j ∈ {1, . . . , n} \ {i} and Ai

i = b.

To motivate the definition of total unimodularity, consider the polyhedron

P = {x ∈ Rn
+ | Ax = b}

with A ∈ Zm×n of full row rank and b ∈ Zm. For each vertex x of P , there exists a basis
B ⊂ {1, . . . , n} such that xB = A−1

B b and xN = 0. For matrices with det(AB) = ±1, Cramer’s
rule ensures that A−1

B is integral. Therefore, integrality of x can be guaranteed if we require that
det(AB) is equal to ±1. This motivates the following definition.

Definition 4.2 (Unimodularity, Total unimodularity).

1. A matrix A ∈ Zm×n of full row rank is unimodular if the determinant of AB is 1 or -1
for every basis B.

2. A matrix A ∈ Zm×n is totally unimodular if the determinant of each square submatrix
of A is 0, 1, or -1.

Note that all entries of a totally unimodular matrix (which are 1 × 1 submatrices of A) must
belong to the set {0, 1, −1}. However, that is not the case for unimodular matrices; for instance,
the matrix

A =
[
3 2
1 1

]
.

is unimodular. The reason we carry both definitions is to be able to make statements about
optimization problems in standard form and in inequality form. We will provide several char-
acterizations that allow checking quickly whether a matrix is (totally) unimodular. For now, to
appreciate why the definitions are important, we state the main result of interest.

Theorem 4.3.

1. The matrix A ∈ Zm×n of full row rank is unimodular if and only if the polyhedron
P (b) = {x ∈ Rn

+ | Ax = b} is integral for all b ∈ Zm with P (b) ̸= ∅.

2. The matrix A is totally unimodular if and only if the polyhedron P (b) = {x ∈ Rn
+ |

Ax ≤ b} is integral for all b ∈ Zm with P (b) ̸= ∅.

Proof. (a) “⇒” Assume that A is unimodular. Consider b ∈ Zm with P (b) ̸= ∅. Any extreme point
x ∈ P (b) can be written as (xB, xN ), where xB = A−1

B b and xN = 0 for some basis B. Because
A is unimodular, det(AB) = ±1, which by Cramer’s rule implies that xB (and therefore also x) is
integral.

“⇐” Suppose that P (b) ̸= ∅ is integral for any integral b. Let B be any basis of A. We claim
that it’s sufficient to argue that A−1

B is integral; because AB is integral and det(AB) · det(A−1
B ) = 1,

that would imply that det(AB) ∈ {1, −1} and thus that A is unimodular. To prove that A−1
B is

integral, consider a right-hand-side b = AB · z + ei, where z is an integral vector. We have that
A−1

B · b = z + A−1
B ei. Thus, by choosing z sufficiently large so that z + A−1

B ei ≥ 0 (which can readily
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be done by increasing the entries), we obtain a basic feasible solution for P (b). Because this is
integral by assumption, this implies that A−1

B ei must be integral. Repeating the argument for all
ei proves that A−1

B is integral.

(b) We claim that A is totally unimodular if and only if the matrix [A, I] is unimodular.
Moreover, we claim that for any b ∈ Zm, the extreme points of the polyhedron {x ∈ Rn

+ | Ax ≤ b}
are integral if and only if the extreme points of the polyhedron {(x, y) ∈ Rn+m

+ | Ax + Iy = b}
are integral. (These will be the subject of future propositions, but the proofs follow by suitably
expanding determinants.) The result then follows from part (a).

The critical consequence from Theorem 4.3 is that the optimal value in the IP min{cTx | Ax ≤
b, x ∈ Zn

+} is obtained by solving the LP min{cTx | Ax ≤ b, x ∈ Rn
+}.

Detecting (total) unimodularity is therefore quite critical, so we provide a few additional suf-
ficient conditions followed by examples.

Proposition 4.4. A matrix A ∈ {0, 1, −1}m×n is totally unimodular if any of the following
conditions holds:

1. AT is totally unimodular.

2. −A is totally unimodular.

3. [A −A I −I] is totally unimodular.

4. Each nonsingular submatrix of A has a row with an odd number of non-zero components.

5. The sum of entries in any square submatrix with even row and column sums is divisible
by four.

6. No square submatrix of A has determinant +2 or -2. A matrix A ∈ {0, 1, −1}m×n is
totally unimodular if any of the following holds:

7. Every subset R of rows of A can be partitioned into R1 and R2 so that
∑

i∈R1 ai −∑
i∈R2 ai ∈ {0, +1, −1}. (By 1, a similar result holds for columns of A.)

8. Each column of A contains at most two nonzero elements and the rows of A can be
partitioned into R1 and R2 so that the two nonzero entries in a column are in the same
Ri if they have different signs and are in different Ri if they have the same sign.

9. A contains no more than one +1 and one -1 in each column.

10. A has the consecutive ones property: for every column j, asj = atj = 1 implies aij = 1
for s ≤ i ≤ t.

For a proof of these results, see Theorem 19.3 in Schrijver (1997).
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4.1 Examples of Totally Unimodular Matrices

4.1.1 Node-Edge Incidence Matrix for Bipartite Graphs

Let G = (N , E) be an undirected graph and let A ∈ {0, 1}|N |×|E| be the node-edge incidence
matrix of G, i.e., Ai,e = 1 if and only if i ∈ e. Then, A is TU if and only if the graph G is
bipartite. The proof follows from Proposition 4.4 (#6) and is omitted.

Figure 8 shows an example. Recalling our discussion of matching problems in §1.6, it can be
seen that if these are defined on bipartite graphs, all matching formulations will admit integral LP
relaxations.

Figure 8: Undirected bipartite graph and its node-edge incidence matrix.

4.2 Node-Arc Incidence Matrix for Directed Graphs

Let D = (N, E) be a directed graph and let M be the N ×E incidence matrix of D, where Mv,e = 1
if and only if e = (·, v) (arc e enters node v), Mv,e = −1 if and only if e = (v, ·) (arc e leaves node
v), and Mv,e = 0 otherwise. Then, M is TU. Figure 9 shows an example.

Figure 9: Directed graph and its node-arc incidence matrix.

The important consequence of this result is that all network flow problems with integral arc
capacities and integral demand or supply at nodes will admit an integral LP relaxation. The
Prosche Motors problem on the second homework is one such example – so with integral data, the
optimal solution is guaranteed to be integral.

4.3 Interval Matrices

If A ∈ {0, 1}m×n and each column of A has its values of 1 consecutively (under some ordering of
the columns of A), then A is TU. Such matrices are called interval matrices. An example is the
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matrix below. 
1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1


4.4 Network Matrices

All of the examples above are special instances of network matrices. To formalize this broad
class, let D = (V, A) be a directed graph and for some A0 ⊆ A, let T = (V, A0) be a directed tree
on V . Let M be the A0 × A matrix defined by, for a = (v, w) ∈ A and a′ ∈ A0:

Ma′,a =


+1 if the unique v − w path in T passes through a′ forwardly
−1 if the unique v − w path in T passes through a′ backwardly
0 if the unique v − w path in T does not pass through a′.

Then, M is TU. For an example, consider the directed graph D and directed tree T in Figure 10.
The corresponding network matrix is shown in Table 1.

Figure 10: Directed graph (a) and a directed tree (b).

(1, 2) (1, 3) (2, 4) (4, 3) (3, 5) (5, 4) (4, 6) (5, 6)
(1, 3) 1 1 1 0 0 0 0 0
(2, 4) −1 0 0 0 0 0 0 0
(4, 3) −1 0 0 1 0 −1 1 0
(3, 5) 0 0 0 0 1 −1 1 0
(5, 6) 0 0 0 0 0 0 1 1

Table 1: Network matrix corresponding to the directed graph and tree in Figure 10.

There is a very famous result in combinatorial optimization due to Seymour (1980), who showed
that every TU matrix arises, in a certain way, from network matrices and just two other matrices.
Importantly, testing whether a matrix is TU can be done in polynomial time; for more details, see
Schrijver (1997).
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5 Dual Integrality and Submodular Functions
Next, we discuss an alternative way to show integrality of polyhedra based on linear optimization
duality. This will also allow us to discuss submodular and supermodular functions, which are
extremely important concepts in their own right in optimization.

The approach here is based on a simple observation: to show that the LP relaxation of an IP
has integral extreme points, it suffices to check that the optimal value of any LP with integer cost
vector is an integer. The following proposition summarizes the idea.

Proposition 5.1. Let P be a nonempty polyhedron with at least one extreme point. The
polyhedron P is integral if and only if the optimal value ZLP := min{cTx | x ∈ P} is an integer,
for all c ∈ Zn.

The intuition should be quite clear; the proof is straightforward and is omitted.
Therefore, to show integrality of a polyhedron P , it suffices to show that ZLP ∈ Z for all c ∈ Zn.

One way to show that is to construct a dual optimal integral solution for any such c.4 We
illustrate this with an example that is important in its own right.

5.1 Polymatroid Polyhedra and Submodular Functions

For a given finite set N = {1, . . . , n}, consider a function f(S) defined on subsets S of N .

Definition 5.2 (Sub-, super-modular). A set function f : 2N → R is submodular if

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ), ∀S, T ⊂ N

and it is supermodular if the reverse inequality holds.

Note that the condition in the definition may not make a lot of sense written this way, but it is
equivalent to:

f(S) − f(S ∩ T ) ≥ f(S ∪ T ) − f(T ), ∀S, T ⊂ N.

In this form, note that the set difference between the sets appearing on the left of the inequality
is exactly S \ (S ∩ T ) = S \ T , which exactly matches the difference between the sets on the right
because (S ∪ T ) \ T = S \ T . So the condition is stating that the gains obtained when adding S \ T
to the set S ∩ T are greater than the gains obtained when adding the same set to the larger set T .
The following alternative definitions will make this intuition even more clear.

Proposition 5.3. A set function f : 2N → R is submodular if and only if:

(a) For any S, T ⊆ N such that S ⊆ T and k /∈ T :

f(S ∪ {k}) − f(S) ≥ f(T ∪ {k}) − f(T ).

4These ideas are related to the concept of total dual integrality (TDI), which has been studied extensively in
combinatorial optimiziation. For a more general treatment, see Schrijver (1997).
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(b) For any S ⊆ N and any j, k with j, k /∈ S and j ̸= k:

f(S ∪ {j}) − f(S) ≥ f(S ∪ {j, k}) − f(S ∪ {k}). (3.2)

For a proof, see Bertsimas and Weismantel (2005) or Bach (2010).
These equivalent definitions should make it clear that a submodular function has the certain

“diminishing returns” or “decreasing differences” property: the marginal gain when adding
an element k to a larger set T is smaller than the gain when adding k to a smaller set S (or
equivalently, the marginal gain from including an extra element j is smaller when some other
element k is also included). In economics, a submodular cost function captures economies of scale,
whereas a submodular profit function captures substitution. (Supermodular functions are the
exact opposite.) On first glance, one may perceive submodular functions as a discrete analog to
concave functions, but that analogy only holds solely in terms of economic intuition, but not from
an optimization standpoint! In fact, in terms of optimization, submodular functions behave
more like convex functions, e.g., there are efficient algorithms to minimize them, they admit a
very elegant link to convexity (through the Lovasz extension) and they also admit a duality theory.

Submodular and supermodular functions play central roles in a variety of fields, including
operations research, economics, and computer science. The scope of our treatment here will be
limited, but we direct the interested reader to Bach (2013) for a concise overview and the book
Schrijver (2003) for an in-depth treatment.

Subsequently, we are interested in submodular functions that are non-negative and increasing5

in the set inclusion sense, i.e.,
f(S) ≤ f(T ), ∀S ⊂ T ⊆ N.

5.1.1 Examples

A few quick examples of (monotone) submodular functions.
• Linear functions. A function f : 2N → R is modular if

f(A) =
∑
i∈A

wi

for some weights w : N → R. Such functions are both supermodular and submodular. If
wi ≥ 0 for all i ∈ N , then f is also increasing.

• Compositions with linear functions. As a generalization of the linear case, consider any
weights w ≥ 0 and any concave function g : R → R. Then, the function f : 2N → R

f(S) = g
(∑

i∈S

wi

)
is submodular. If g is increasing, f is also increasing.
For a different example, suppose that g is convex and the weights w are zero except for two
weights with opposite signs, i.e., ∃ i ̸= j : wi ≤ 0, wj ≥ 0. Then, f : 2N → R defined as

f(S) = g
(∑

i∈S

wi

)
5We use “increasing” and “decreasing” in weak sense, and use “strictly” to emphasize strict relationships.
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is submodular.

• Set systems and coverage functions. Given a universe U and n subsets A1, A2, . . . , An ⊂
U , we can define several natural submodular functions on the set N = {1, 2, . . . , n}. First,
the coverage function given by

f(S) =
∣∣∣∣∣⋃
i∈S

Ai

∣∣∣∣∣
is submodular. This naturally extends to the weighted coverage function: given a non-negative
weight function w : U → R+,

f(S) = w

(⋃
i∈S

Ai

)
is submodular. Another related function defined by

f(S) =
∑
x∈U

max
i∈S

w(Ai, x)

is also submodular, where w(Ai, x) is a non-negative weight for Ai covering x. All these
functions are increasing.

• Valuation functions with decreasing marginal values. Sometimes we assume that
a certain function is submodular not because it arises in a specific combinatorial way, but
because it arises in a setting where it’s natural to have decreasing marginal returns. An
example are combinatorial auctions, where each player has a valuation function w : 2N → R
on subsets of items. This might have a specific form, like

w(S) = min

∑
j∈S

vj , B

 ,

or it might be given by a black box. However, we might assume that the (unknown) function
is submodular just it may be natural to expect that having more items decreases the benefit
of acquiring another item.

• Optimal TSP cost on tree graphs. Consider an undirected tree graph G = (N, E)
with a positive cost for traversing the edges (ce ≥ 0 for every edge e ∈ E). For every S ⊆ N ,
define f(S) as the optimal (i.e., smallest) cost for a TSP that goes through all the nodes in
S. Then, f(S) is submodular.

• Network optimization. Submodular functions also arise in network optimization models.
For instance, consider a directed graph where there are capacities on the edges that constrain
how much flow can be transported through the edge. Then, if we define f(S) as the maximum
flow that can be received at a set of sink nodes S, the function f(S) is submodular.

• Inventory and supply chain management. Lastly, submodular functions appear fre-
quently in the study of supply chain and inventory management, such as when characteriz-
ing perishable inventory systems, dual sourcing, and inventory control problems with trans-
shipment.
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Returning to our setting, let us consider the following problem:

maximize
n∑

j=1
rjxj∑

j∈S

xj ≤ f(S), ∀S ⊆ N

x ∈ Zn
+.

This problem essentially looks like an extension of the knapsack problem that we considered earlier,
except that there is one constraint for every possible subset S ⊆ N . Let F denote the set of feasible
integer solutions and let

P (f) =

x ∈ Rn
+

∣∣∣∣∣∣
∑
j∈S

xj ≤ f(S), ∀S ⊂ N


denote the feasible set of the LP relaxation.

We next state and prove the main result in this section: the polyhedron P (f), which is called
a polymatroid, is integral for any f(S) is submodular and increasing.

Theorem 5.4. If f is submodular, increasing, integer valued, and f(∅) = 0, then

P (f) = conv(F).

Proof. Consider the linear relaxation and its dual:

maximize
n∑

j=1
rjxj∑

j∈S

xj ≤ f(S), S ⊂ N,

xj ≥ 0, j ∈ N

minimize
∑

S⊂N

f(S)yS∑
S:j∈S

yS ≥ rj , j ∈ N,

yS ≥ 0, S ⊂ N.

(7)

The key intuition behind the proof is that in a maximization like the one in the primal above,
the use of a submodular function to evaluate the right-hand-sides implies that a greedy heuristic
actually produces an optimal solution. So we will construct such a greedy solution for the primal
and also a feasible solution for the dual with the same cost.

Suppose r1 ≥ r2 ≥ . . . ≥ rk > 0 ≥ rk+1 ≥ . . . ≥ rn. Let Sj = {1, . . . , j} for j ∈ N , and S0 = ∅.
We prove that the following primal and dual solutions x and y are optimal for the primal and dual
problem, respectively.

xj =
{

f(Sj) − f(Sj−1), for 1 ≤ j ≤ k,

0, for j > k.

yS =


rj − rj+1, for S = Sj , 1 ≤ j < k,

rk, for S = Sk,

0, otherwise.
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Because f is integer valued, x ∈ Zn. Moreover, x is primal feasible: f is increasing, which implies
xj ≥ 0, and for all T ⊂ N , we have: ∑

j∈T

xj =
∑

j∈T,j≤k

(
f(Sj) − f(Sj−1)

)
(because f submodular) ≤

∑
j∈T,j≤k

(
f(Sj ∩ T ) − f(Sj−1 ∩ T )

)
=

= f(Sk ∩ T ) − f(∅)
(because f monotone) ≤ f(T ) − f(∅)

(because f(∅) = 0) = f(T ).

To show that y is dual feasible, note that yS ≥ 0 and:∑
S:j∈S

yS = ySj + . . . + ySk = rj , if j ≤ k and
∑

S:j∈S

yS = 0 ≥ rj , if j > k.

The primal objective value is
k∑

j=1
rj

(
f(Sj) − f(Sj−1)

)
,

and the dual objective value is

k−1∑
j=1

(rj − rj+1)f(Sj) + rkf(Sk) =
k∑

j=1
rj

(
f(Sj) − f(Sj−1)

)
.

From strong duality, the two problems have the same optimal value. Because this is true for every
r ∈ Zn, it follows that P (f) = conv(F).

An analogous result holds in the context of the following minimization problem

min
n∑

j=1
cjxj∑

j∈S

xj ≥ f(S), ∀S ⊆ N,

x ∈ Zn
+,

where the function f is supermodular. The arguments are identical and are omitted.

Importantly, the proof above highlighted that a greedy solution is optimal for problem (7).
The intuition is directly tied to the diminishing returns property of submodular functions and can
appreciated when interpreting the problem as a generalized knapsack problem. Because any item
j brings more reward when included in a smaller (rather than larger) set S, it is optimal to include
the items in decreasing order of their rewards ri as long as the rewards are positive.

Several important extensions of this result are possible. For instance, a similar result also holds when
f(S) = min(f1(S), f2(S)) where f1, f2 are both submodular, increasing, integer-valued functions.
For details, see Bertsimas and Weismantel (2005) or Schrijver (2003).
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5.2 Relationship Between Submodularity and Convexity

It may be tempted to view a submodular function f : 2N → R as a discrete analogue of a concave
function due to the property of diminishing marginal returns; but in fact, the proper analogy is
with convex functions, and there is a deep result in combinatorial optimization that links the two
directly. The Lovász extension, introduced by Laszlo Lovász in his classical paper (Lovász, 1983),
provides a bridge between discrete and continuous optimization by extending a discrete set function
to a continuous, piecewise-linear function defined on the hypercube [0, 1]n.

Given x ∈ [0, 1]n, let π be a permutation that sorts its coordinates in decreasing order, xπ(1) ≥
xπ(2) ≥ · · · ≥ xπ(n). Define the nested sets Sk = {π(1), . . . , π(k)} for k = 1, . . . , n, and S0 = ∅. The
Lovász extension of f is

f̂(x) =
n∑

k=1
xπ(k)

(
f(Sk) − f(Sk−1)

)
.

To understand this construction, it is helpful to also define for every set S ⊆ N = {1, . . . , n} an
indicator vector χS ∈ Rn such that:

χS(i) =
{

1, if i ∈ S

0, otherwise.

The Lovász extension is a linearly interpolation of the values of f between the vertices of the
hypercube, which correspond to indicator vectors χS of subsets S ⊆ N . In particular, f̂(χS) = f(S)
for every S.

The Lovász extension reveals a fundamental structural equivalence:

f is submodular ⇐⇒ f̂ is convex on [0, 1]n.

Thus, submodularity corresponds exactly to convexity of the continuous interpolation f̂ . Intuitively,
the diminishing-returns property of f translates into convexity of f̂ when viewed over the continuous
hypercube. Conversely, supermodularity corresponds to concavity of the Lovász extension.

From a geometric perspective, the Lovász extension can also be interpreted as the support
function of the base polyhedron

B(f) =
{

y ∈ Rn : y(S) ≤ f(S) for all S ⊆ N, y(N) = f(N)
}
,

which contains all modular lower bounds that are tight for f . Each subgradient of f̂ at a point x
corresponds to an extreme point of B(f), and the function f̂ can be seen as the convex envelope
of f over [0, 1]n.

This connection has powerful algorithmic implications. Submodular minimization can be for-
mulated as

min
S⊆V

f(S) = min
x∈[0,1]n

f̂(x),

and because f̂ is convex, the problem is solvable in polynomial time. Both classical combinato-
rial algorithms (e.g., the Iwata–Fleischer–Fujishige algorithm Iwata et al. (2001), Schrijver’s algo-
rithm Schrijver (2000)) and convex-analytic approaches using subgradients on the base polyhedron
(see Fujishige (2005)) yield efficient solutions. In contrast, maximizing a submodular function
corresponds to a generally nonconvex problem and is NP-hard, although strong approximation
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guarantees are available (e.g., the 1 − 1/e bound for monotone maximization under cardinality
constraints).

Our treatment here was meant more as a teaser. For a deeper treatment of submodularity
and discrete convexity, you can refer to classic textbooks such as (Schrijver, 2003) or (Fujishige,
2005). There is also a rich theory of discrete duality that is amply discussed in Murota (2003),
and sub/super-modularity also play a critical role in comparative statics analysis, which seeks
to understand when the optimal value of an optimization problem is increasing or decreasing in
particular problem parameters; this is very important in economics and related fields, and (Topkis,
1998) is the classic monograph discussing these.

6 Improving LP Relaxations with Valid Cuts
We argued earlier that if T is the set of feasible integer solutions and P is the feasible region of the
linear relaxation for an IP formulation, then unless conv(T ) = P , there will be valid inequalities
for conv(T ) that are not valid for P . Such inequalities are called cuts because they cut off some
fractional solution from P . Adding cuts strengthens the IP formulation and also leads to algorithmic
improvements.

To appreciate how cuts can be generated, consider the following IP:

min cTx

Ax = b

x ≥ 0
x ∈ Zn,

where A, b, c have rational entries. The LP relaxation would be an LP in standard form, so let x⋆

be an optimal basic feasible solution and B be the associated optimal basis. Then, we can write
x⋆ = [x⋆

B; x⋆
N ] where x⋆

N = 0 are the nonbasic variables. (For simplicity, we assume here that
B = {1, . . . , m}, to avoid extra notation.) Then, recall that we have:

x⋆
B + A−1

B AN x⋆
N = A−1

B b,

and consider one of these equalities in which the right-hand-side is fractional. Suppose this
corresponds to the basic variable xi, so we write this as:

x⋆
i +

∑
j∈N

āijx⋆
j = b̄.

But then, because any x ∈ T must satisfy x ≥ 0, it can be shown that:

xi +
∑
j∈N

⌊āij⌋xj ≤ xi +
∑
j∈N

aijxj = b̄, ∀ x ∈ T.

Moreover, because x ∈ T should be integer, it must be that:

xi +
∑
j∈N

⌊āij⌋xj ≤ xi +
∑
j∈N

aijxj ≤ ⌊b̄⌋, ∀ x ∈ T.
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Figure 11: T denotes the feasible set for an IP, and P is the feasible set of the LP relaxation. The
red binding constraint xi +∑

j∈N āijxj = b̄ defines a supporting hyperplane for P , and the (blue)
inequality xi +∑

j∈N ⌊āij⌋xj ≤ xi +∑
j∈N aijxj ≤ ⌊b̄⌋ is a Gomory cut.

This inequality is satisfied by all integer solutions, but is not satisfied by x⋆. (That follows
because x⋆

i = b̄ and x⋆
j = 0 for all nonbasic j ∈ N , and because ⌊b̄⌋ < b̄ by our assumption that b̄ is

fractional.) So we just obtained a valid inequality that cuts off some of the polyhedral region of the
feasible relation without removing any feasible integer point! This is the key idea behind Gomory
cuts (named after Ralph Gomory, who introduced them in 1958). See Figure 11 for a visualization.

This approach lead to the first cutting plane method for solving IPs. It has been shown that
by systematically adding these Gomory cuts, and using the dual simplex method6 with appropriate
anticycling rules, we obtain a finitely terminating algorithm for solving general IPs. In practice,
however, this method has not been particularly successful.

6.1 Inequality Form and Chvatal Closure

If you are wondering how this would work for linear IPs in inequality form, let A1, . . . , An be the
columns of a rational matrix A ∈ Qm×n, b ∈ Qm, and define

P =
{

x ∈ Rn :
n∑

j=1
Ajxj ≤ b, x ≥ 0} and T = {x ∈ P : x ∈ Zn}.

Note that if for any feasible x ∈ P and any vector u ∈ Rm
+ , we readily have:

uTAx ≤ uTb, (8)

because this simply entails multiplying the i-th inequality by ui and adding all the inequalities up.
So any constraint of the form (8) must hold for any point in the LP relaxation’s feasible set, x ∈ P .
But then, because x ≥ 0, the following inequality must be valid for feasible integer points, x ∈ T :

n∑
j=1

(
⌊uTAj⌋

)
xj ≤ uTb,

6We use the dual simplex method here because we are introducing more constraints in the primal, so the dual
readily gives a feasible solution.
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and because x ∈ Zn, we can strengthen this inequality to
n∑

j=1

(
⌊uTAj⌋

)
xj ≤ ⌊uTb⌋. (9)

In summary, inequality (9) is valid for all the feasible integer points x ∈ P and may cut off some
fractional points.

By adding inequalities like (9) to the original inequalities Ax ≤ b, we can strengthen the LP
relaxation. By varying the vector u ≥ 0, we obtain what is known as the first Chvátal closure of
the polyhedron P :

P1 :=
{

x ∈ Rn
+ : Ax ≤ b,

n∑
j=1

(
⌊uTAj⌋

)
xj ≤ ⌊uTb⌋, ∀ u ≥ 0

}
. (10)

It can be shown that the set P1 is actually a polyehdral set. (This requires a proof because we
may be adding an infinite number of inequalities with the process above! However, a finite number
of inequalities suffices – see Theorem 9.4 in Bertsimas and Weismantel (2005) or Theorem 23.1
in Schrijver (1997).)

This process can actually be repeated, i.e., we can apply the procedure outlined above to the
polyhedron P1, etc. A remarkable fact is that after a finite number of such iterations, we are
guaranteed to recover exactly the convex hull conv(T ), so the process terminates in a finite number
of steps. We will not prove this here, but the interested reader can refer to Schrijver (1997) for
details and a full proof.

7 Lift-and-Project
The key idea behind the lift-and-project approach is to construct polyhedral sets that lie between
P and conv(T ) as projections of higher-dimensional sets that have a polynomial description. The
polyhedron P ⊆ Rn is first lifted into a higher-dimensional space Rn+p, where the formulation is
strengthened, and is then projected back onto the original space Rn to obtain a tigher approximation
of conv(T ).

The construction is actually remarkably intuitive and it is enlightening to see it one time.
Consider a polyhedron P := {x ∈ Rn+p

+ : Ax ≥ b} and the mixed-0, 1 feasible set T := {x ∈
{0, 1}n×Rp

+ : Ax ≥ b} (note that we’re generalizing things slightly here by allowing some continuous
variables as well). Without loss of generality, we assume the constraints Ax ≥ b include xj ≥ 0
for j = 1, . . . , n + p, and xj ≤ 1 for j = 1, . . . , n. Balas, Ceria, and Cornuéjols study the following
lift-and-project procedure:

• Step 0: Select j ∈ {1, . . . , n}.

• Step 1: Generate the nonlinear system:

xj(Ax − b) ≥ 0, (1 − xj)(Ax − b) ≥ 0. (11)

• Step 2: Linearize the system by substituting yi for xixj (for i ̸= j), and xj for x2
j . (Because

xj ∈ {0, 1}, note that we have x2
j = xj , so the latter substitution is without any loss.) Call

the resulting polyhedron Mj .
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Figure 12: The original polyhedral set P is on the left, and the relaxation Pj obtained via one step
of the lift-and-project procedure is on the right.

• Step 3: Project Mj onto the x-space. Let Pj be the resulting polyhedron.

We claim that this is a valid relaxation that is better than P , i.e., T ⊆ P1 ⊆ P . That T ⊂ Pj

holds follows because for any x ∈ T , we have (x, y) ∈ Mj by choosing yi = xixj for i ̸= j, because
x2

j = xj holds due to xj being a binary variable.) Moreover, this is a tighter relaxation than P
because Ax ≥ b is obtained by adding the constraints (11) defining Mj .

The key question is how tight is the relaxation Pj . The following theorem shows that it is
actually the tightest possible among the relaxations that ignore the integrality of all
variables xi for i ̸= j. A visualization of the statement is in Figure 12.

Theorem 7.1. Pj = conv
(
{Ax ≥ b, xj = 0} ∪ {Ax ≥ b, xj = 1}

)
.

The set ⋂n
j=1 Pj is called the lift-and-project closure. It is a better approximation of conv(T )

than P ,

conv(T ) ⊆
n⋂

j=1
Pj ⊆ P,

and in practice it can be a much better approximation. Bonami and Minoux performed computa-
tional experiments on 35 mixed 0-1 linear programs from the MIPLIB library and found that the
lift-and-project closure reduces the integrality gap by 37% on average.

Sherali and Adams defined a stronger relaxation by skipping Step 0 and considering the non-
linear constraints xj(Ax − b) ≥ 0 and (1 − xj)(Ax − b) ≥ 0 for all j = 1, . . . , n in Step 1. Then, in
Step 2, variables yij are introduced for all i = 1, . . . , n + p and j = 1, . . . , n with i > j. Note that
the size of the linear system generated in Step 2 is much larger than in the previous lift-and-project
procedure: on the order of n2 + np variables and nm constraints instead of just n + p − 1 new
variables and 2m constraints before. Clearly, the Sherali-Adams relaxation is at least as strong
as the lift-and-project closure defined above, and it can be strictly stronger because the Sherali-
Adams procedure takes advantage of the fact that yij = yji, whereas this is not the case for the
lift-and-project closure ⋂n

j=1 Pj .
In practice, experiments done by Bonami and Minoux for the 19 MIPLIB instances for which

the Sherali-Adams bound could be computed within an hour show that the improvement over the
lift-and-project bound was 10% on average. On these 19 instances, the Sherali-Adams relaxation
closed 39% of the integrality gap on average (compared to 29% for the lift-and-project closure).
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The Lovasz-Schrijver relaxation is even stronger than Sherali-Adams, but requires solving
semidefinite programming problems (which we have not yet discussed :-) ).

7.1 Other Types of Cuts

Apart from the Gomory-Chvátal cuts and the Lift-and-Project procedures that we discussed, many
other types of cuts also exist. For instance:

• Mixed-Integer Rounding (MIR) Cuts: These are designed to handle general integer variables
by transforming fractional solutions into valid integer bounds.

• Knapsack Cover Cuts: Applied to knapsack problems

w ≥ 0, wTx ≤ K ⇒
∑

i

xi ≤ |C| − 1 for any C :
∑
i∈C

wi > K (Cover)

• Clique Cuts: These are used to strengthen a constraint like ∑n
i=1 xi ≤ 1 when some of the

binary variables appearing form a clique. In that case, for any pair of variables in the clique,
we can add the constraint xi + xj ≤ 1.

• Flow Cover and Flow Path Cuts: Specialized cuts for models involving flow variables, such
as network flow problems.

Solvers such as Gurobi have several cuts embedded and the solution methods actually involve
branch and cut methods that combine branching with adding cuts. However, developing good
cuts often requires good knowledge of the specific combinatorial structure of the problem and is
part art, part science.

We refer readers interested in more details to the excellent tutorial Cornuéjols (2008) and several
of the classic textbooks.

8 Solving IPs
Unlike linear programming problems, integer programming problems are very difficult to solve.
This should not be surprising in view of the complexity of just finding a feasible solution, which we
discussed in §2. However, given their practical importance, many solution approaches have been
devised. There are three main categories of algorithms:

1. Exact algorithms that are guaranteed to find an optimal solution, but may take an expo-
nential number of iterations. The most famous among these include: cutting planes, branch
and bound, branch and cut, lift-and-project methods, and dynamic programming methods.

2. Approximation algorithms that provide a suboptimal solution with a bound on the degree
of its suboptimality in polynomial time.

3. Heuristic algorithms that provide a suboptimal solution, but typically without any guaran-
tees on its quality. Although the running time is not guaranteed to be polynomial, empirical
evidence suggests that some of these algorithms find a good solution fast. Examples include
local search methods and simulated annealing.
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Moreover, a Lagrangean duality theory can also be developed for integer programming problems
to derive lower bounds on the optimal cost. Such bounds are very useful in exact algorithms, as they
can allow us to avoid enumerating too many feasible solutions and thus speed up the performance.

We briefly overview some of these developments in this section, but refer the interested reader
to classical textbooks such as Schrijver (2003) or Bertsimas and Weismantel (2005) for a more
thorough overview.

8.1 Cutting Planes

Our previous discussion of cuts leads to the first class of algorithms for solving IPs. This is called
a cutting plane method and works roughly as follows:

Generic cutting plane algorithm.

1. Solve the linear relaxation and get an optimal solution x⋆

2. If x⋆ is integer stop

3. If not, add a cut (i.e., linear inequality that all integer solutions satisfy but that x⋆ does not
satisfy) and go to step 1 again.

The exact algorithm obviously depends on the choice of cuts. Pure cutting plane algorithms have
not been extremely successful in practice, but adding cuts within a branch-and-bound algorithm
(which we discuss next) can significantly speed up the framework so cuts are very meaningful in
practice.

8.2 Branch and Bound

Branch and bound uses a “divide and conquer” approach to explore the set of feasible integer
points, and leverages the LP relaxations to derive bounds on the optimal cost so as to avoid
exploring certain parts of the set of feasible integer solutions.

To understand the key intuition, consider a very simple problem of solving an IP with three
binary decisions x, y, z:

min c1 · x + c2 · y + c3 · z

A

x
y
z

 ≤ b

x, y, z ∈ {0, 1}

(12)

where A, b and c1, c2, c3 are rational. Figure 13 depicts one possible implementation of a branch-
and-bound algorithm. The steps are roughly as follows:

1. We start with an upper bound U := +∞ and a lower bound L := −∞ on the optimal value
of problem (12).

2. In the first step, corresponding to the root node F of the tree, we solve the LP relaxation
of (12). If the optimal solution is integral, we are done! This must be optimal in problem (12)!
Suppose the optimal value is OPT (F ) and the optimal solution involves fractional variables:
xF = 0, yF = 0.3, zF = 1.
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Figure 13: A tree of subproblems in a branch-and-bound procedure.

3. Note that now L := OPT (F ) is an improved (finite!) lower bound on the problem.

4. We then select one of the variables that was fractional in the optimal solution (here, y) and
create two branches that correspond to two sub-problems named F1 and F2. This step is
what gives the method its name – branching. In problem F1, we solve an LP relaxation where
we constrain y to be 0, whereas in F2 we solve an LP relaxation where we constrain y to be 1.
In both of these problems, the other variables x, z are only constrained to satisfy 0 ≤ x, z ≤ 1.

5. Suppose we first solve F1 and at optimality we get OPT (F1) and the optimal solution xF 1 =
0.5, yF 1 = 0, zF 1 = 1. We do not yet have a feasible solution, so the upper bound is still
U = +∞. But we can further branch based on the fractional variable x, so we create two
other subproblems, F3 and F4. In both of these LPs, y is still constrained to satisfy y = 0
(these are part of the same master branch corresponding to F1), but in F3 we also add the
constraint x = 0, whereas in F2 we add the constraint x = 1. In both F3 and F4, z is only
required to satisfy 0 ≤ z ≤ 1.

6. Continuing in this fashion, upon any subsequent branching, we increase the number of deci-
sions that are constrained to belong to {0, 1}, so eventually we may obtain a feasible solution
for problem (12). In our case, that happens in node F3. (In case this does not happen in the
current subtree or in any other subtree, the problem must be infeasible...) Once we have a
feasible solution, we can update the upper bound. In our case, U := OPT (F3) is a valid
upper bound. If U − L satisfies our desired tolerance/optimality gap, we can even stop the
entire process. Otherwise, we can continue this process of branching and bounding.

7. A few additional observations that can speed up the procedure:
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• once we have a finite upper bound U , we need need to explore subtrees for a root note
that has optimal value larger than U . For instance, if the LP in node F2 returns optimal
value OPT (F2) > U , that subtree is not worth exploring because the best possible binary
solution in that entire subtree is worse than our current best feasible solution!

• If we end up solving LP relaxations for all the children of a node, the maximum of those
optimal values is a better lower bound of the optimal value achievable by IP solutions in
that node. For instance, if we solve both F1 and F2, then min(OPT (F1), OPT (F2)) is a
better lower bound for the optimal value of the original problem. This allows updating
the lower bound L on the overall problem.

Our example showcases the fundamental principles behind a branch-and-bound approach. For
a slightly more general description, let F be the set of feasible solutions to a minimization IP:

minimize cTx subject to x ∈ {x : Ax ≤ b, x ∈ Zn} (13)

The fundamental idea is to partition the set F into a finite collection of subsets Fi and solve a
separate subproblem for each subset. For every such subproblem, we only need to be able to derive
a lower bound ℓ(Fi) on the cost of the subproblem, i.e., we need to compute

ℓ(Fi) ≤ min
x∈Fi

cTx.

At each step, we thus maintain a collection of subproblems/nodes to potentially explore further,
and choose one of these to explore. Each subproblem may be almost as difficult as the original
problem and this suggests trying to solve each subproblem by means of the same method, that is,
by splitting it into further subproblems. This is the branching part of the method.

In the course of this process, we occasionally solve certain subproblems to optimality or simply
evaluate the cost of certain feasible solutions. This allows us to maintain an upper bound U on the
optimal cost, which could be the cost of the best feasible solution encountered thus far. If the lower
bound ℓ(Fi) corresponding to a particular subproblem satisfies ℓ(Fi) ≥ U , then this subproblem
need not be considered further, since the optimal solution to the subproblem is no better than the
best feasible solution encountered thus far.

Importantly, there are several choices to be set in this algorithm; for instance:

1. There are different ways of choosing which subproblem to explore next. Two extreme choices
are “breadth-first search” and “depth-first search.”

2. There may be several ways of obtaining a lower bound ℓ(Fi) on the optimal cost of a sub-
problem. One possibility that we used above is to consider the LP relaxation. However, we
can also employ smart Lagrangean duality to derive tighter bounds – see 8.3 for details.

3. The LP relaxations could be improved by adding cuts. This is what branch-and-cut
approaches do.

4. There are several ways to break a problem into subproblems. Our example partitioned based
on constraints such as xi ≤ ⌊x⋆

i ⌋ and xi ≥ ⌈x⋆
i ⌉, but other choices are possible.

The best choices are usually dictated by experience and perhaps the most critical choice revolves
around the ability to derive good lower bounds. In practice, the branch-and-bound method often
produces good solutions quickly, although in principle it could take exponential time in the worst-
case.
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8.3 Lagrangean Duality

We consider the integer programming problem

minimize c⊤x

Ax ≥ b,

Dx ≥ d,

x ∈ Zn,

(14)

and assume that A, D, b, c, and d have integer entries. Let ZIP be the optimal cost and let

X = {x ∈ Zn | Dx ≥ d}.

The key premise behind the method is that optimizing over the set X can be done efficiently;
for example, X may have an ideal characterization (which involves totally-unimodular matrices) or
perhaps the combinatorial structure allows us to employ specific algorithms that work very well.
However, adding the constraints Ax ≥ b makes the problem difficult to solve.

To that end, just like we did when we introduced the dual of an LP, we consider relaxing these
more difficult constraints and penalizing violations. Specifically, let p ≥ 0 be a vector of
dual variables (Lagrange multipliers) and define

minimize c⊤x + p⊤(b − Ax)
x ∈ X ,

and denote its optimal cost by g(p). We will say that we relax or dualize the constraints Ax ≥ b.
For a fixed p, the above problem can be solved efficiently, as we are optimizing a linear objective
over the set X . Following our developments for LPs, we note that g(p) provides a lower bound on
ZIP.

Lemma 8.1. If the problem (14) has an optimal solution and if p ≥ 0, then Z(p) ≤ ZIP.

The proof is immediate and we omit it. Since this provides a lower bound for any p ≥ 0, it is
natural to consider the tightest such bound, which leads us to introduce the problem

max g(p)
p ≥ 0.

(15)

Mirroring our LP developments, we refer to problem (15) as the Lagrangean dual. Let

ZD = max
p≥0

g(p).

Because g(p) is piece-wise linear and concave (as the minimum of a finite collection of points),
computing ZD involves solving an LP with a potentially very large number of constraints. However,
this leads to a lower bound and a weak duality result.

Theorem 8.2. We have ZD ≤ ZIP.

Unlike linear programming, we do not have have a strong duality result. However, the most
important result here is the following characterization of the Lagrangean dual.
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Theorem 8.3. The optimal value ZD of the Lagrangean dual is equal to the optimal cost of
the following linear programming problem:

minimize c⊤x

subject to Ax ≥ b,

x ∈ conv(X ).
(16)

We omit the proof here and instead refer the interested reader to Bertsimas and Weismantel
(2005). An important consequence of this theorem is the following ordering between the optimal
value of the LP relaxation (ZLP), the Lagrangean dual, and the IP:

ZLP ≤ ZD ≤ ZIP. (17)

The inequality on the left holds because conv(X ) ⊆ {x : Dx ≥ d}, so the feasible set of problem (16)
is contained in the feasible set of the LP relaxation. Problem instances exist where either of the
inclusions in the relation above holds strictly.

9 Dynamic Programming Methods
Lastly, we mention in passing that dynamic programming (DP) methods can also be used to solve
IPs. This is readily evident if one considers the example of the discrete knapsack problem, which
can be readily formulated as a DP. To understand the formulation, consider taking decisions in
n stages, where n is the number of items in the knapsack. At each stage i, we decide whether
to include item i in the knapsack or not. With the state variable v corresponding to remaining
volume in the knapsack, the Bellman recursions for the problem can be written as:

Ji(v) =
{

Ji+1(v), if v < wj

max
(
rj + Ji+1(v − wj), Ji+1(v)

)
, otherwise.

The recursion states that the best option in stage i (when the decision is whether to include item i
or not) is to not include it in case that would exceed the remaining volume in the knapsack (i.e., if
v < wj) and otherwise to choose the best option between including the item and moving to stage
i + 1 with less remaining volume (which yields rj plus the best continuation value from stage i + 1
starting with volume v − wj) or not including item i and moving to stage i + 1 with the entire
remaining item v (which yields Ji+1(v)). The recursion can be initialized at stage i = n + 1 with
Jn+1(v) = 0 for any v ≥ 0, and solved backwards for i = n, n − 1, . . . , 1.

More broadly, dynamic programming techniques can actually be used to derive pseudo-polynomial
time algorithms for solving IPs in fixed dimension, i.e., if either the number of constraints is con-
sidered fixed or the number of variables is considered fixed. Details for the interested reader are
available in Schrijver (1997) and Papadimitriou and Steiglitz (1998).
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