CME 307: Optimization September 26, 2025

Lecture 1: Intro + Linear Algebra Review
Prof. Madeleine Udell

1 What is an Optimization Problem?

Definition 1.1. Definition (Optimization problem). An optimization problem is specified
by:

e an objective function f:R"” — R,

e a feasible set X C R™.
The goal is to compute the optimal value

o= it
p xlgxf(fc),

and to find a point * € X attaining this value, if one exists.

Linear and Integer Optimization

We can write a linear optimization problem with equality, inequality, and bound constraints as

minimize ¢’z
subject to Az =1b
Czx <d

variable r € R”,

with data ¢ € R", A € R™M>*" p e R™ C e R™2*" d c R™2. Here,

e ¢z is the linear objective to minimize,

e Ax = b are linear equality constraints,
e Cz < d are linear inequality constraints.

It is also quite common to include a box constraint on the optimization variable £ < z < wu.
If some components of x are required to be integers, we obtain a mixed-integer program (MIP):

minimize ¢’z
subject to Ax =b
Cx <d

variable T € Z™ x R,

Example 1.2. Example (Diet problem). We an planning a backpacking trip, and want to
minimize the total weight of the food packed subject to nutritional requirements. We can write



this problem as the linear program

minimize Lz

subject to Ax > b
x>0
variable x € R”,

where
e A c R™" with a;; = amount of nutrient 7 in food j,
e b € R™ with b; = required daily amount of nutrient 7,
e c € R" with ¢; = weight per serving of food j.

The solution z* gives the number of servings of each food to buy.
Ezxtensions:

o [f foods are chosen in integer servings, x € Z".

o If foods come from recipes, * = By where each column of B represents a recipe, with
indices recording the proportion of each food in the recipe, and entries of y € R™ denote
the number of servings of each recipe.

e If we require diet diversity, y < u, which ensures that no recipe is used more than u times.

e If any level of a nutrient within a range [bmin, bmax| is acceptable, we can introduce slack
variables s to ensure that the nutrient levels lie in this range: Az +s =0, [ < s < u with
b= (bmin + bmax)/27 = bmin - b, u = bmax —b.

Nonlinear Optimization

The general nonlinear problem has the form

minimize  fo(x)
subject to  fi(z) <0, i=1,...,m

variable rz e R"

where fo, fi, h; may be nonlinear.

Example 1.3. Example (Desalination plant). Variables x control pumps, pressures, and
chemical levels.

e Objective fo(x): cost of water produced.

e Constraints f;(x): level of impurity ¢ in water.

e Feasible domain: f;(x) < b; for legal limits b;.
The operator asks: what setting of  minimizes cost subject to safe water quality?




Z2

x>0

Figure 1: Feasible region for a 2D diet LP, showing halfspaces a/z > b;, z > 0, and an optimal
corner x*.

Modularity in Optimization

Optimization is modular:

1. Model problem mathematically.

[\V)

. Identify properties (linear? convex? integer?).
3. Use an appropriate solver or design one.
4. Tterate: approximate, reformulate, or warm-start.

Principle. The art of optimization lies as much in modeling and reformulation as in algorithm
design.

2 Linear algebra review

2.1 Linear independence

Definition 2.1 (Span of vectors). The span of vectors Ay, ..., A € R™ is
span{Aj,..., Ak} = {)\1A1 +oo o+ M Ap | A € Rk}.

Vectors Ai, ..., Ay are linearly dependent if there exists some nonzero A € R¥ with A\ A; +
-+ + Mg A = 0; otherwise, they are linearly independent.

If the vectors are linearly independent, none can be written as a linear combination of the
others. If they are dependent, at least one can.



Example 2.2 (Quick check for dependence). Let A; = (1,0,1)7, Ay = (0,1,1)T, A3 =
(1,1,2)T € R3. Then Az = A; + As, so {Ay, As, A3} is linearly dependent.

Exercise. Decide whether the set {(1,2,3)",(2,5,8)T,(0,1,2)"} is linearly independent. If
not, exhibit a nontrivial linear relation.

2.2 Linear and affine subspaces

Definition 2.3 (Linear vs. affine subspace). A set L C R" is a linear subspace if it is closed
under addition and scalar multiplication: v,w € L and A € R imply v + w € L and Av € L. A
set A C R™ is affine if it can be written as xg + L for some zg € R™ and some linear subspace
L.

A linear subspace always contains the origin, while an affine subspace need not.

A linear subspace contains any linear combination of points in the space. Similarly, an affine
subspace contains any affine combination of points in the space: any combination where the coef-
ficients sum to one.

Theorem 2.4 (Characterization of affine sets). A set A C R™ is affine if and only if it contains
every affine combination of its points: for allv,w € A and all X € R,

A+ (1-Nw € A.

Proof. (=) If A = zy + L with L a linear subspace, write v = o + £, and w = z¢ + £, with
by, by € L. Then

A+ (1= Nw = XNao + L) + (1 = A (2o + lw) =20+ (My + (1 = N)ly) € mo+ L = A,

since L is closed under linear combinations.

(<) Fixve Aand set L:={w —v | w € A}. We show L is a linear subspace. Let u; = w; —v
and us = we — v with wi,wy € A, and «, 8 € R. Then for any A € R,

v+ Aup + (1= Nug = dwy + (1 — Mws € A,

using the assumed closure under affine combinations. Taking A = a%‘_ﬁ (if a + B # 0) yields
v+ auy + Pug € A, so auy + Pug € L. If a+ = 0, the same closure (e.g., with A = 1) also implies
auy + Bug € L. Thus L is a linear subspace and A =v + L, i.e., A is affine. O

Example 2.5. L = {(¢,2t) | t € R} is a line through the origin, hence a linear subspace of R2.
The set A = (1,0) + L = {(1 +¢,2t) | t € R} is a parallel line not through the origin, hence
affine but not linear.




Exercise. Show that any two parallel affine subspaces in R™ have the same dimension. (Hint:
write them as zg + L and yo + L for the same linear subspace L.)

2.3 Span, nullspace, and rank of a matrix

Let A € R™*™ with columns Aq,..., A,.

Definition 2.6 (Column span, nullspace, rank).
span(A) = {Az | x € R"} CR™, null(4) = {z € R" | Az =0} CR",

Rank(A) = dim(span(A)).

These objects will be the main players in describing solutions to Az = b.

Theorem 2.7 (Rank-nullity). For every A € R™*™,

Rank(A) + dim(null(A4)) = n.

Proof. Let A =[A; Ay --- Ay] with A; € R™. Choose an index set S C {1,...,n} that is minimal
such that {A; : j € S} spans span(A) = {Az : € R"}. By minimality, {A; : j € S} is linearly
independent, hence |S| = Rank(A) =: r.

Step 1 (Produce n —r independent null vectors). Fix any j ¢ S. Since A; € span{4; : i € S}, there
exists a vector w) € R™ supported only on S with

Aj = waJ)Az — A(ej — w(j)) =0.
€S
Thus 2U) := e; —w") € null(A) for every j ¢ S. These {2\) : j ¢ S} are linearly independent: if
> ¢S ozjz(j ) = 0, then looking at coordinates outside S (which only appear in the e; parts) forces

every a; = 0. Hence dimnull(4) > n —r.

Step 2 (No room for more). Define the projection 7 : R™ — R"™™" that keeps only coordinates
outside S. We claim 7 is injective on null(4). Indeed, if € null(A) and 7(z) = 0, then x is

supported on .S and
0= Ax = Z TiA;.
€S
Because {A; : i € S} is linearly independent, x; = 0 for all i € S, so x = 0. Therefore dim null(A) <
n—r.
Combining the two steps gives dimnull(4) = n—r, i.e.,, Rank(A)+dimnull(A) = r+(n—r) = n.
O

Example 2.8 (Small computation). For A = [(1) 1

(1]], the columns span span(A) = {(z1 +



T2, z2+x3)' | z € R?}, so Rank(A) = 2. Solving Az = 0 gives 1 = —r3 and x3 = —29, hence
null(A) = {(—t, t, —t)" |t € R}, dim(null(4)) =1,

and rank-nullity 2 + 1 = 3 = n holds.

o B

1 3
Exercise. Compute Rank(A) and a basis for null(A4) for A = |2 6| . Verify rank-nullity.
1 1

2.4 Orthogonality of row space and nullspace

Definition 2.9 (Orthogonal complement). For a subspace L C R", the orthogonal complement

is
Lt ={yeR":yTx =0 Ve L}.

Theorem 2.10. For any A € R™*™

null(A4) = span(AT)*.

Proof. (C) If € null(4), then Az = 0, so for any y € R™, (ATy)Tx = yT(Az) = 0. Thus
x € span(AT)*.

(D) If x € span(AT)+, then for each row A] of A, (A])Tz = A;xz = 0. Thus Az = 0, so
x € null(A4). O

2.5 Solution sets of linear systems

Definition 2.11 (Solution set). For A € R™*™ and b € R™, the solution set of the linear
system Ax =bis {x € R" : Az = b}.

We ask: when does a solution exist, what is the dimension of the set, and when is it unique?

Proposition 2.12 (Existence, structure, and dimension). A solution to Ax = b exists iff
b € span(A). If a solution xq exists, then the full solution set is the affine subspace

{z € R" : Az = b} = ¢ + null(4),

which has dimension n — Rank(A). In particular, the solution is unique iff null(A) = {0}.

Proof. (<) If b € span(A) there exists xp with Azg = b, so a solution exists. (=) If Az = b has
a solution xg, then Az = b iff A(x —z¢) =0, i.e., v — z¢ € null(A). Thus the solution set equals
xo + null(A). Its dimension is dim(null(A)) = n — Rank(A) by rank-nullity. Uniqueness holds iff
null(A4) = {0}. O



1 1 0
01 1
solution is 29 = (1,0,1) " since Az = b. Using the nullspace from the earlier example,

Example 2.13 (Worked solution). Take A = [ } and b = (1,1)7. One particular

{z: Az = b} = 20 +null(4) = {(1,0,1)T +¢t(-1,1,-1)7 |t € R},

an affine line of dimension 3 — Rank(A4) = 1.

1 0 1
2 1 3
xo and parametrize all solutions; report the dimension. (c¢) State a condition on b under which
Az = b would have a unique solution.

Exercise. For A = [ ] and b = (2,5)": (a) Decide if b € span(A). (b) If solvable, find

Definition 2.14. A square matrix A € R™*" is invertible if there exists A~! such that AA™! =
ATTA=1T.

Theorem 2.15 (Invertibility conditions). The following are equivalent for A € R"*":
1. A is invertible.
2. Rank(A) = n.
3. null(A) = {0}.

4. For all b € R"™, the system Ax = b has a unique solution.

Proof. (1 = 4) If A is invertible, then for any b € R", 2 = A~!b is the unique solution to Az = b.

(4 = 3) If for all b € R", Az = b has a unique solution, then in particular Az = 0 has only the
trivial solution x = 0, so null(4) = {0}.

(3 = 2) If null(A) = {0}, then by rank-nullity, Rank(A) +dim(null(A)) = n implies Rank(A) =
n.

(2 = 1) If Rank(A) = n, then the columns of A span R™. Thus for any b € R", there exists a
solution to Az = b. Since Rank(A) = n, dim(null(4)) = 0, so the solution is unique. Hence (4)
holds, which we already showed implies (1). O

2.6 Key concepts
e Linear independence, span, subspaces, affine subspaces.

e Rank, nullspace, and the rank-nullity theorem.

e Solutions of Ax = b: existence, uniqueness, affine geometry.

Invertibility: equivalent characterizations.

Orthogonality: row space and nullspace are complements.
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