CME 307: Optimization

September 26, 2025

Lecture 1: Intro + Linear Algebra Review

Prof. Madeleine Udell

1 What is an Optimization Problem?

Definition 1.1. Definition (Optimization problem). An optimization problem is specified by:

- an objective function $f: \mathbb{R}^n \to \mathbb{R}$,
- a feasible set $\mathcal{X} \subseteq \mathbb{R}^n$.

The goal is to compute the optimal value

$$p^{\star} := \inf_{x \in \mathcal{X}} f(x),$$

and to find a point $x^* \in \mathcal{X}$ attaining this value, if one exists.

Linear and Integer Optimization

We can write a linear optimization problem with equality, inequality, and bound constraints as

minimize
$$c^T x$$

subject to $Ax = b$
 $Cx \le d$
variable $x \in \mathbb{R}^n$,

with data $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m_1 \times n}$, $b \in \mathbb{R}^{m_1}$, $C \in \mathbb{R}^{m_2 \times n}$, $d \in \mathbb{R}^{m_2}$. Here,

- $c^T x$ is the linear objective to minimize,
- Ax = b are linear equality constraints,
- $Cx \leq d$ are linear inequality constraints.

It is also quite common to include a box constraint on the optimization variable $\ell \le x \le u$. If some components of x are required to be integers, we obtain a mixed-integer program (MIP):

minimize
$$c^T x$$

subject to $Ax = b$
 $Cx \le d$
variable $x \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}$.

Example 1.2. Example (Diet problem). We an planning a backpacking trip, and want to minimize the total weight of the food packed subject to nutritional requirements. We can write

this problem as the linear program

minimize
$$c^T x$$

subject to $Ax \ge b$
 $x \ge 0$
variable $x \in \mathbb{R}^n$,

where

- $A \in \mathbb{R}^{m \times n}$ with $a_{ij} = \text{amount of nutrient } i \text{ in food } j$,
- $b \in \mathbb{R}^m$ with b_i = required daily amount of nutrient i,
- $c \in \mathbb{R}^n$ with c_j = weight per serving of food j.

The solution x^* gives the number of servings of each food to buy. *Extensions:*

- If foods are chosen in integer servings, $x \in \mathbb{Z}^n$.
- If foods come from recipes, x = By where each column of B represents a recipe, with indices recording the proportion of each food in the recipe, and entries of $y \in \mathbb{R}^m$ denote the number of servings of each recipe.
- If we require diet diversity, $y \leq u$, which ensures that no recipe is used more than u times.
- If any level of a nutrient within a range $[b_{\min}, b_{\max}]$ is acceptable, we can introduce slack variables s to ensure that the nutrient levels lie in this range: Ax + s = b, $l \le s \le u$ with $b = (b_{\min} + b_{\max})/2$, $l = b_{\min} b$, $u = b_{\max} b$.

Nonlinear Optimization

The general nonlinear problem has the form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0$, $i = 1, ..., m_1$
 $h_j(x) = 0$, $j = 1, ..., m_2$
variable $x \in \mathbb{R}^n$

where f_0, f_i, h_j may be nonlinear.

Example 1.3. Example (Desalination plant). Variables x control pumps, pressures, and chemical levels.

- Objective $f_0(x)$: cost of water produced.
- Constraints $f_i(x)$: level of impurity i in water.
- Feasible domain: $f_i(x) \leq b_i$ for legal limits b_i .

The operator asks: what setting of x minimizes cost subject to safe water quality?

Figure 1: Feasible region for a 2D diet LP, showing halfspaces $a_i^{\mathsf{T}} x \geq b_i$, $x \geq 0$, and an optimal corner x^{\star} .

Modularity in Optimization

Optimization is modular:

- 1. Model problem mathematically.
- 2. Identify properties (linear? convex? integer?).
- 3. Use an appropriate solver or design one.
- 4. Iterate: approximate, reformulate, or warm-start.

Principle. The art of optimization lies as much in *modeling* and *reformulation* as in algorithm design.

2 Linear algebra review

2.1 Linear independence

Definition 2.1 (Span of vectors). The *span* of vectors $A_1, \ldots, A_k \in \mathbb{R}^m$ is

$$\operatorname{span}\{A_1,\ldots,A_k\} = \{\lambda_1 A_1 + \cdots + \lambda_k A_k \mid \lambda \in \mathbb{R}^k\}.$$

Vectors A_1, \ldots, A_k are linearly dependent if there exists some nonzero $\lambda \in \mathbb{R}^k$ with $\lambda_1 A_1 + \cdots + \lambda_k A_k = 0$; otherwise, they are linearly independent.

If the vectors are linearly independent, none can be written as a linear combination of the others. If they are dependent, at least one can.

Example 2.2 (Quick check for dependence). Let $A_1 = (1,0,1)^{\top}$, $A_2 = (0,1,1)^{\top}$, $A_3 = (1,1,2)^{\top} \in \mathbb{R}^3$. Then $A_3 = A_1 + A_2$, so $\{A_1, A_2, A_3\}$ is linearly dependent.

Exercise. Decide whether the set $\{(1,2,3)^{\top}, (2,5,8)^{\top}, (0,1,2)^{\top}\}$ is linearly independent. If not, exhibit a nontrivial linear relation.

2.2 Linear and affine subspaces

Definition 2.3 (Linear vs. affine subspace). A set $L \subseteq \mathbb{R}^n$ is a *linear subspace* if it is closed under addition and scalar multiplication: $v, w \in L$ and $\lambda \in \mathbb{R}$ imply $v + w \in L$ and $\lambda v \in L$. A set $A \subseteq \mathbb{R}^n$ is affine if it can be written as $x_0 + L$ for some $x_0 \in \mathbb{R}^n$ and some linear subspace L.

A linear subspace always contains the origin, while an affine subspace need not.

A linear subspace contains any linear combination of points in the space. Similarly, an affine subspace contains any *affine combination* of points in the space: any combination where the coefficients sum to one.

Theorem 2.4 (Characterization of affine sets). A set $A \subseteq \mathbb{R}^n$ is affine if and only if it contains every affine combination of its points: for all $v, w \in A$ and all $\lambda \in \mathbb{R}$,

$$\lambda v + (1 - \lambda)w \in A$$
.

Proof. (\Rightarrow) If $A = x_0 + L$ with L a linear subspace, write $v = x_0 + \ell_v$ and $w = x_0 + \ell_w$ with $\ell_v, \ell_w \in L$. Then

$$\lambda v + (1 - \lambda)w = \lambda(x_0 + \ell_v) + (1 - \lambda)(x_0 + \ell_w) = x_0 + (\lambda \ell_v + (1 - \lambda)\ell_w) \in x_0 + L = A,$$

since L is closed under linear combinations.

 (\Leftarrow) Fix $v \in A$ and set $L := \{w - v \mid w \in A\}$. We show L is a linear subspace. Let $u_1 = w_1 - v$ and $u_2 = w_2 - v$ with $w_1, w_2 \in A$, and $\alpha, \beta \in \mathbb{R}$. Then for any $\lambda \in \mathbb{R}$,

$$v + \lambda u_1 + (1 - \lambda)u_2 = \lambda w_1 + (1 - \lambda)w_2 \in A$$

using the assumed closure under affine combinations. Taking $\lambda = \frac{\alpha}{\alpha + \beta}$ (if $\alpha + \beta \neq 0$) yields $v + \alpha u_1 + \beta u_2 \in A$, so $\alpha u_1 + \beta u_2 \in L$. If $\alpha + \beta = 0$, the same closure (e.g., with $\lambda = 1$) also implies $\alpha u_1 + \beta u_2 \in L$. Thus L is a linear subspace and A = v + L, i.e., A is affine.

Example 2.5. $L = \{(t, 2t) \mid t \in \mathbb{R}\}$ is a line through the origin, hence a linear subspace of \mathbb{R}^2 . The set $A = (1, 0) + L = \{(1 + t, 2t) \mid t \in \mathbb{R}\}$ is a parallel line not through the origin, hence affine but not linear.

Exercise. Show that any two parallel affine subspaces in \mathbb{R}^n have the same dimension. (Hint: write them as $x_0 + L$ and $y_0 + L$ for the same linear subspace L.)

2.3 Span, nullspace, and rank of a matrix

Let $A \in \mathbb{R}^{m \times n}$ with columns A_1, \ldots, A_n .

Definition 2.6 (Column span, nullspace, rank).

$$\operatorname{span}(A) = \{Ax \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m, \quad \operatorname{null}(A) = \{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n,$$

$$Rank(A) = dim(span(A)).$$

These objects will be the main players in describing solutions to Ax = b.

Theorem 2.7 (Rank-nullity). For every $A \in \mathbb{R}^{m \times n}$,

$$\operatorname{Rank}(A) + \dim(\operatorname{null}(A)) = n.$$

Proof. Let $A = [A_1 \ A_2 \ \cdots \ A_n]$ with $A_j \in \mathbb{R}^m$. Choose an index set $S \subseteq \{1, \ldots, n\}$ that is minimal such that $\{A_j : j \in S\}$ spans span $(A) = \{Ax : x \in \mathbb{R}^n\}$. By minimality, $\{A_j : j \in S\}$ is linearly independent, hence |S| = Rank(A) =: r.

Step 1 (Produce n-r independent null vectors). Fix any $j \notin S$. Since $A_j \in \text{span}\{A_i : i \in S\}$, there exists a vector $w^{(j)} \in \mathbb{R}^n$ supported only on S with

$$A_j = \sum_{i \in S} w_i^{(j)} A_i \iff A(e_j - w^{(j)}) = 0.$$

Thus $z^{(j)} := e_j - w^{(j)} \in \text{null}(A)$ for every $j \notin S$. These $\{z^{(j)} : j \notin S\}$ are linearly independent: if $\sum_{j \notin S} \alpha_j z^{(j)} = 0$, then looking at coordinates outside S (which only appear in the e_j parts) forces every $\alpha_j = 0$. Hence dim $\text{null}(A) \ge n - r$.

Step 2 (No room for more). Define the projection $\pi: \mathbb{R}^n \to \mathbb{R}^{n-r}$ that keeps only coordinates outside S. We claim π is injective on $\mathrm{null}(A)$. Indeed, if $x \in \mathrm{null}(A)$ and $\pi(x) = 0$, then x is supported on S and

$$0 = Ax = \sum_{i \in S} x_i A_i.$$

Because $\{A_i : i \in S\}$ is linearly independent, $x_i = 0$ for all $i \in S$, so x = 0. Therefore dim $\operatorname{null}(A) \le n - r$.

Combining the two steps gives dim $\operatorname{null}(A) = n - r$, i.e., $\operatorname{Rank}(A) + \operatorname{dim} \operatorname{null}(A) = r + (n - r) = n$.

Example 2.8 (Small computation). For $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, the columns span span $(A) = \{(x_1 + 1), (x_1 + 1), (x_2 + 1), (x_3 + 1), (x_4 + 1$

 $(x_2, x_2 + x_3)^{\top} \mid x \in \mathbb{R}^3$, so Rank(A) = 2. Solving Ax = 0 gives $x_1 = -x_2$ and $x_3 = -x_2$, hence null $(A) = \{(-t, t, -t)^{\top} \mid t \in \mathbb{R}\}$, dim(null(A)) = 1,

and rank-nullity 2 + 1 = 3 = n holds.

Exercise. Compute Rank(A) and a basis for null(A) for $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{bmatrix}$. Verify rank-nullity.

2.4 Orthogonality of row space and nullspace

Definition 2.9 (Orthogonal complement). For a subspace $L \subseteq \mathbb{R}^n$, the *orthogonal complement* is

$$L^{\perp} = \{ y \in \mathbb{R}^n : y^{\mathsf{T}} x = 0 \ \forall x \in L \}.$$

Theorem 2.10. For any $A \in \mathbb{R}^{m \times n}$,

$$\operatorname{null}(A) = \operatorname{span}(A^{\mathsf{T}})^{\perp}.$$

Proof. (\subseteq) If $x \in \text{null}(A)$, then Ax = 0, so for any $y \in \mathbb{R}^m$, $(A^{\mathsf{T}}y)^{\mathsf{T}}x = y^{\mathsf{T}}(Ax) = 0$. Thus $x \in \text{span}(A^{\mathsf{T}})^{\perp}$.

 (\supseteq) If $x \in \operatorname{span}(A^{\intercal})^{\perp}$, then for each row A_i^{\intercal} of A, $(A_i^{\intercal})^{\intercal}x = A_ix = 0$. Thus Ax = 0, so $x \in \operatorname{null}(A)$.

2.5 Solution sets of linear systems

Definition 2.11 (Solution set). For $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, the solution set of the linear system Ax = b is $\{x \in \mathbb{R}^n : Ax = b\}$.

We ask: when does a solution exist, what is the dimension of the set, and when is it unique?

Proposition 2.12 (Existence, structure, and dimension). A solution to Ax = b exists iff $b \in \text{span}(A)$. If a solution x_0 exists, then the full solution set is the affine subspace

$$\{x \in \mathbb{R}^n : Ax = b\} = x_0 + \text{null}(A),$$

which has dimension n - Rank(A). In particular, the solution is unique iff $\text{null}(A) = \{0\}$.

Proof. (\Leftarrow) If $b \in \text{span}(A)$ there exists x_0 with $Ax_0 = b$, so a solution exists. (\Rightarrow) If Ax = b has a solution x_0 , then Ax = b iff $A(x - x_0) = 0$, i.e., $x - x_0 \in \text{null}(A)$. Thus the solution set equals $x_0 + \text{null}(A)$. Its dimension is $\dim(\text{null}(A)) = n - \text{Rank}(A)$ by rank-nullity. Uniqueness holds iff $\text{null}(A) = \{0\}$.

Example 2.13 (Worked solution). Take $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ and $b = (1,1)^{\top}$. One particular solution is $x_0 = (1,0,1)^{\top}$ since $Ax_0 = b$. Using the nullspace from the earlier example,

$${x : Ax = b} = x_0 + \text{null}(A) = {(1, 0, 1)^\top + t(-1, 1, -1)^\top | t \in \mathbb{R}},$$

an affine line of dimension 3 - Rank(A) = 1.

Exercise. For $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \end{bmatrix}$ and $b = (2,5)^{\top}$: (a) Decide if $b \in \text{span}(A)$. (b) If solvable, find x_0 and parametrize all solutions; report the dimension. (c) State a condition on b under which Ax = b would have a unique solution.

Definition 2.14. A square matrix $A \in \mathbb{R}^{n \times n}$ is *invertible* if there exists A^{-1} such that $AA^{-1} = A^{-1}A = I$.

Theorem 2.15 (Invertibility conditions). The following are equivalent for $A \in \mathbb{R}^{n \times n}$:

- 1. A is invertible.
- 2. Rank(A) = n.
- 3. $null(A) = \{0\}.$
- 4. For all $b \in \mathbb{R}^n$, the system Ax = b has a unique solution.

Proof. $(1 \Rightarrow 4)$ If A is invertible, then for any $b \in \mathbb{R}^n$, $x = A^{-1}b$ is the unique solution to Ax = b. $(4 \Rightarrow 3)$ If for all $b \in \mathbb{R}^n$, Ax = b has a unique solution, then in particular Ax = 0 has only the trivial solution x = 0, so null $(A) = \{0\}$.

 $(3 \Rightarrow 2)$ If $\text{null}(A) = \{0\}$, then by rank-nullity, $\text{Rank}(A) + \dim(\text{null}(A)) = n$ implies Rank(A) = n.

 $(2 \Rightarrow 1)$ If $\operatorname{Rank}(A) = n$, then the columns of A span \mathbb{R}^n . Thus for any $b \in \mathbb{R}^n$, there exists a solution to Ax = b. Since $\operatorname{Rank}(A) = n$, $\operatorname{dim}(\operatorname{null}(A)) = 0$, so the solution is unique. Hence (4) holds, which we already showed implies (1).

2.6 Key concepts

- Linear independence, span, subspaces, affine subspaces.
- Rank, nullspace, and the rank-nullity theorem.
- Solutions of Ax = b: existence, uniqueness, affine geometry.
- Invertibility: equivalent characterizations.
- Orthogonality: row space and nullspace are complements.