
CME 307: Optimization September 26, 2025

Lecture 1: Intro + Linear Algebra Review

Prof. Madeleine Udell

1 What is an Optimization Problem?

Definition 1.1. Definition (Optimization problem). An optimization problem is specified
by:

• an objective function f : Rn → R,
• a feasible set X ⊆ Rn.

The goal is to compute the optimal value

p⋆ := inf
x∈X

f(x),

and to find a point x⋆ ∈ X attaining this value, if one exists.

Linear and Integer Optimization

We can write a linear optimization problem with equality, inequality, and bound constraints as

minimize cTx
subject to Ax = b

Cx ≤ d
variable x ∈ Rn,

with data c ∈ Rn, A ∈ Rm1×n, b ∈ Rm1 , C ∈ Rm2×n, d ∈ Rm2 . Here,

• cTx is the linear objective to minimize,

• Ax = b are linear equality constraints,

• Cx ≤ d are linear inequality constraints.

It is also quite common to include a box constraint on the optimization variable ℓ ≤ x ≤ u.
If some components of x are required to be integers, we obtain a mixed-integer program (MIP):

minimize cTx
subject to Ax = b

Cx ≤ d
variable x ∈ Zn1 × Rn2 .

Example 1.2. Example (Diet problem). We an planning a backpacking trip, and want to
minimize the total weight of the food packed subject to nutritional requirements. We can write
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this problem as the linear program

minimize cTx
subject to Ax ≥ b

x ≥ 0
variable x ∈ Rn,

where

• A ∈ Rm×n with aij = amount of nutrient i in food j,

• b ∈ Rm with bi = required daily amount of nutrient i,

• c ∈ Rn with cj = weight per serving of food j.

The solution x⋆ gives the number of servings of each food to buy.
Extensions:

• If foods are chosen in integer servings, x ∈ Zn.

• If foods come from recipes, x = By where each column of B represents a recipe, with
indices recording the proportion of each food in the recipe, and entries of y ∈ Rm denote
the number of servings of each recipe.

• If we require diet diversity, y ≤ u, which ensures that no recipe is used more than u times.

• If any level of a nutrient within a range [bmin, bmax] is acceptable, we can introduce slack
variables s to ensure that the nutrient levels lie in this range: Ax+ s = b, l ≤ s ≤ u with
b = (bmin + bmax)/2, l = bmin − b, u = bmax − b.

Nonlinear Optimization

The general nonlinear problem has the form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m1

hj(x) = 0, j = 1, . . . ,m2

variable x ∈ Rn

where f0, fi, hj may be nonlinear.

Example 1.3. Example (Desalination plant). Variables x control pumps, pressures, and
chemical levels.

• Objective f0(x): cost of water produced.
• Constraints fi(x): level of impurity i in water.
• Feasible domain: fi(x) ≤ bi for legal limits bi.

The operator asks: what setting of x minimizes cost subject to safe water quality?
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x1

x2

a⊺1x = b1

a⊺2x = b2

x⋆c⊺x = const −c

x ≥ 0

a⊺1x ≥ b1

a⊺2x ≥ b2

Figure 1: Feasible region for a 2D diet LP, showing halfspaces a⊺i x ≥ bi, x ≥ 0, and an optimal
corner x⋆.

Modularity in Optimization

Optimization is modular:

1. Model problem mathematically.

2. Identify properties (linear? convex? integer?).

3. Use an appropriate solver or design one.

4. Iterate: approximate, reformulate, or warm-start.

Principle. The art of optimization lies as much in modeling and reformulation as in algorithm
design.

2 Linear algebra review

2.1 Linear independence

Definition 2.1 (Span of vectors). The span of vectors A1, . . . , Ak ∈ Rm is

span{A1, . . . , Ak} = {λ1A1 + · · ·+ λkAk | λ ∈ Rk}.

Vectors A1, . . . , Ak are linearly dependent if there exists some nonzero λ ∈ Rk with λ1A1 +
· · ·+ λkAk = 0; otherwise, they are linearly independent.

If the vectors are linearly independent, none can be written as a linear combination of the
others. If they are dependent, at least one can.
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Example 2.2 (Quick check for dependence). Let A1 = (1, 0, 1)⊤, A2 = (0, 1, 1)⊤, A3 =
(1, 1, 2)⊤ ∈ R3. Then A3 = A1 +A2, so {A1, A2, A3} is linearly dependent.

Exercise. Decide whether the set {(1, 2, 3)⊤, (2, 5, 8)⊤, (0, 1, 2)⊤} is linearly independent. If
not, exhibit a nontrivial linear relation.

2.2 Linear and affine subspaces

Definition 2.3 (Linear vs. affine subspace). A set L ⊆ Rn is a linear subspace if it is closed
under addition and scalar multiplication: v, w ∈ L and λ ∈ R imply v + w ∈ L and λv ∈ L. A
set A ⊆ Rn is affine if it can be written as x0 + L for some x0 ∈ Rn and some linear subspace
L.

A linear subspace always contains the origin, while an affine subspace need not.
A linear subspace contains any linear combination of points in the space. Similarly, an affine

subspace contains any affine combination of points in the space: any combination where the coef-
ficients sum to one.

Theorem 2.4 (Characterization of affine sets). A set A ⊆ Rn is affine if and only if it contains
every affine combination of its points: for all v, w ∈ A and all λ ∈ R,

λv + (1− λ)w ∈ A.

Proof. (⇒) If A = x0 + L with L a linear subspace, write v = x0 + ℓv and w = x0 + ℓw with
ℓv, ℓw ∈ L. Then

λv + (1− λ)w = λ(x0 + ℓv) + (1− λ)(x0 + ℓw) = x0 +
(
λℓv + (1− λ)ℓw

)
∈ x0 + L = A,

since L is closed under linear combinations.

(⇐) Fix v ∈ A and set L := {w− v | w ∈ A}. We show L is a linear subspace. Let u1 = w1 − v
and u2 = w2 − v with w1, w2 ∈ A, and α, β ∈ R. Then for any λ ∈ R,

v + λu1 + (1− λ)u2 = λw1 + (1− λ)w2 ∈ A,

using the assumed closure under affine combinations. Taking λ = α
α+β (if α + β ̸= 0) yields

v+αu1+βu2 ∈ A, so αu1+βu2 ∈ L. If α+β = 0, the same closure (e.g., with λ = 1) also implies
αu1 + βu2 ∈ L. Thus L is a linear subspace and A = v + L, i.e., A is affine.

Example 2.5. L = {(t, 2t) | t ∈ R} is a line through the origin, hence a linear subspace of R2.
The set A = (1, 0) + L = {(1 + t, 2t) | t ∈ R} is a parallel line not through the origin, hence
affine but not linear.
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Exercise. Show that any two parallel affine subspaces in Rn have the same dimension. (Hint:
write them as x0 + L and y0 + L for the same linear subspace L.)

2.3 Span, nullspace, and rank of a matrix

Let A ∈ Rm×n with columns A1, . . . , An.

Definition 2.6 (Column span, nullspace, rank).

span(A) = {Ax | x ∈ Rn} ⊆ Rm, null(A) = {x ∈ Rn | Ax = 0} ⊆ Rn,

Rank(A) = dim(span(A)).

These objects will be the main players in describing solutions to Ax = b.

Theorem 2.7 (Rank-nullity). For every A ∈ Rm×n,

Rank(A) + dim(null(A)) = n.

Proof. Let A = [A1 A2 · · · An] with Aj ∈ Rm. Choose an index set S ⊆ {1, . . . , n} that is minimal
such that {Aj : j ∈ S} spans span(A) = {Ax : x ∈ Rn}. By minimality, {Aj : j ∈ S} is linearly
independent, hence |S| = Rank(A) =: r.

Step 1 (Produce n− r independent null vectors). Fix any j /∈ S. Since Aj ∈ span{Ai : i ∈ S}, there
exists a vector w(j) ∈ Rn supported only on S with

Aj =
∑
i∈S

w
(j)
i Ai ⇐⇒ A

(
ej − w(j)

)
= 0.

Thus z(j) := ej − w(j) ∈ null(A) for every j /∈ S. These {z(j) : j /∈ S} are linearly independent: if∑
j /∈S αjz

(j) = 0, then looking at coordinates outside S (which only appear in the ej parts) forces
every αj = 0. Hence dimnull(A) ≥ n− r.

Step 2 (No room for more). Define the projection π : Rn → Rn−r that keeps only coordinates
outside S. We claim π is injective on null(A). Indeed, if x ∈ null(A) and π(x) = 0, then x is
supported on S and

0 = Ax =
∑
i∈S

xiAi.

Because {Ai : i ∈ S} is linearly independent, xi = 0 for all i ∈ S, so x = 0. Therefore dimnull(A) ≤
n− r.

Combining the two steps gives dimnull(A) = n−r, i.e., Rank(A)+dimnull(A) = r+(n−r) = n.

Example 2.8 (Small computation). For A =

[
1 1 0
0 1 1

]
, the columns span span(A) = {(x1 +
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x2, x2+x3)
⊤ | x ∈ R3}, so Rank(A) = 2. Solving Ax = 0 gives x1 = −x2 and x3 = −x2, hence

null(A) = {(−t, t, −t)⊤ | t ∈ R}, dim(null(A)) = 1,

and rank-nullity 2 + 1 = 3 = n holds.

Exercise. Compute Rank(A) and a basis for null(A) for A =

1 2 3
2 4 6
1 1 1

. Verify rank-nullity.

2.4 Orthogonality of row space and nullspace

Definition 2.9 (Orthogonal complement). For a subspace L ⊆ Rn, the orthogonal complement
is

L⊥ = {y ∈ Rn : y⊺x = 0 ∀x ∈ L}.

Theorem 2.10. For any A ∈ Rm×n,

null(A) = span(A⊺)⊥.

Proof. (⊆) If x ∈ null(A), then Ax = 0, so for any y ∈ Rm, (A⊺y)⊺x = y⊺(Ax) = 0. Thus
x ∈ span(A⊺)⊥.

(⊇) If x ∈ span(A⊺)⊥, then for each row A⊺
i of A, (A⊺

i )
⊺x = Aix = 0. Thus Ax = 0, so

x ∈ null(A).

2.5 Solution sets of linear systems

Definition 2.11 (Solution set). For A ∈ Rm×n and b ∈ Rm, the solution set of the linear
system Ax = b is {x ∈ Rn : Ax = b}.

We ask: when does a solution exist, what is the dimension of the set, and when is it unique?

Proposition 2.12 (Existence, structure, and dimension). A solution to Ax = b exists iff
b ∈ span(A). If a solution x0 exists, then the full solution set is the affine subspace

{x ∈ Rn : Ax = b} = x0 + null(A),

which has dimension n− Rank(A). In particular, the solution is unique iff null(A) = {0}.

Proof. (⇐) If b ∈ span(A) there exists x0 with Ax0 = b, so a solution exists. (⇒) If Ax = b has
a solution x0, then Ax = b iff A(x − x0) = 0, i.e., x − x0 ∈ null(A). Thus the solution set equals
x0 + null(A). Its dimension is dim(null(A)) = n − Rank(A) by rank-nullity. Uniqueness holds iff
null(A) = {0}.
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Example 2.13 (Worked solution). Take A =

[
1 1 0
0 1 1

]
and b = (1, 1)⊤. One particular

solution is x0 = (1, 0, 1)⊤ since Ax0 = b. Using the nullspace from the earlier example,

{x : Ax = b} = x0 + null(A) = {(1, 0, 1)⊤ + t(−1, 1,−1)⊤ | t ∈ R},

an affine line of dimension 3− Rank(A) = 1.

Exercise. For A =

[
1 0 1
2 1 3

]
and b = (2, 5)⊤: (a) Decide if b ∈ span(A). (b) If solvable, find

x0 and parametrize all solutions; report the dimension. (c) State a condition on b under which
Ax = b would have a unique solution.

Definition 2.14. A square matrix A ∈ Rn×n is invertible if there exists A−1 such that AA−1 =
A−1A = I.

Theorem 2.15 (Invertibility conditions). The following are equivalent for A ∈ Rn×n:

1. A is invertible.

2. Rank(A) = n.

3. null(A) = {0}.

4. For all b ∈ Rn, the system Ax = b has a unique solution.

Proof. (1 ⇒ 4) If A is invertible, then for any b ∈ Rn, x = A−1b is the unique solution to Ax = b.
(4 ⇒ 3) If for all b ∈ Rn, Ax = b has a unique solution, then in particular Ax = 0 has only the

trivial solution x = 0, so null(A) = {0}.
(3 ⇒ 2) If null(A) = {0}, then by rank-nullity, Rank(A)+dim(null(A)) = n implies Rank(A) =

n.
(2 ⇒ 1) If Rank(A) = n, then the columns of A span Rn. Thus for any b ∈ Rn, there exists a

solution to Ax = b. Since Rank(A) = n, dim(null(A)) = 0, so the solution is unique. Hence (4)
holds, which we already showed implies (1).

2.6 Key concepts

• Linear independence, span, subspaces, affine subspaces.

• Rank, nullspace, and the rank-nullity theorem.

• Solutions of Ax = b: existence, uniqueness, affine geometry.

• Invertibility: equivalent characterizations.

• Orthogonality: row space and nullspace are complements.
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