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1 Semidefinite programs

1.1 Definition and notation

Let Sn denote the space of n × n real symmetric matrices, and ⟨A,B⟩ := tr(ATB) =
∑

i,j AijBij

the trace inner product. We write X ⪰ 0 to mean X is positive semidefinite (psd), i.e., vTXv ≥ 0
for all v ∈ Rn.

Definition 1.1 (Semidefinite program (SDP)). An SDP is an optimization problem of the
form

minimize ⟨C,X⟩
subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m,

X ⪰ 0

variable X ∈ Sn,

where C,A1, . . . , Am ∈ Sn and b ∈ Rm.

Remark 1.2 (Why SDPs matter). SDPs are convex optimization problems: any local optimum is
globally optimal. They strictly generalize linear programs (LPs) and admit efficient algorithms (e.g.,
interior-point methods; first-order methods for large scale). They arise across control (Lyapunov
inequalities), combinatorial optimization (convex relaxations such as MaxCut), and eigenvalue op-
timization (e.g., minimizing λmax).

Recall some facts about psd matrices:

Proposition 1.3 (Equivalent characterizations of X ⪰ 0). For X ∈ Sn, the following are
equivalent:

(a) X ⪰ 0 (i.e., vTXv ≥ 0 for all v).

(b) All eigenvalues of X are nonnegative.

(c) There exists a matrix R such that X = RTR. Any such R is called a square root of X
and may be written as X1/2.

Proof. (a) ⇒ (b): for any eigenpair (λ, u) with ∥u∥2 = 1, uTXu = λ ≥ 0. (b) ⇒ (c): take
R = Λ1/2UT when X = UΛUT with Λ ⪰ 0. (c) ⇒ (a): vTXv = ∥Rv∥22 ≥ 0.

Proposition 1.4 (The psd cone is closed and convex). The set Sn+ := {X ∈ Sn | X ⪰ 0} is a
closed convex cone.

1



Proof sketch. Cone and convexity follow from linearity of the quadratic form: if X ⪰ 0 and α ≥ 0,
then vT (αX)v = αvTXv ≥ 0, and sums preserve psd. Closedness follows from spectral continuity:
if Xk → X and Xk ⪰ 0, then eigenvalues λi(Xk) ≥ 0 converge to λi(X), so λi(X) ≥ 0.

Example 1.5 (A 2 × 2 psd matrix). For X =

[
a b
b c

]
∈ S2, X ⪰ 0 iff a ≥ 0, c ≥ 0, and

ac− b2 ≥ 0. Equivalently, defining t = a+c
2 and u = a−c

2 , X ⪰ 0 iff

t ≥
√
u2 + b2,

so the cone S2+ is linearly isomorphic to the second-order cone {(u, b, t) |
√
u2 + b2 ≤ t}.

1.2 Geometric interpretation

Proposition 1.6 (Affine slice of a cone). The feasible set of the SDP is the intersection

F = {X ∈ Sn | ⟨Ai, X⟩ = bi, i = 1, . . . ,m} ∩ Sn+.

Hence F is convex.

Proof. Direct from definitions and Proposition 1.4: since the equality constraints define an affine
subspace and the psd constraint defines a convex cone, their intersection is convex.

Remark 1.7 (Visual intuition). For n = 2, S2 is 3-dimensional (coordinates (a, b, c) or (u, b, t)
above). The set S2+ looks like a rotational “ice-cream” (second-order) cone in (u, b, t)-coordinates.
Imposing the affine equations ⟨Ai, X⟩ = bi slices this cone with a plane; the feasible set is a convex
(possibly empty or unbounded) cross-section.

1.3 Applications

Control (Lyapunov inequalities). A continuous-time linear system ẋ = Ax is exponen-
tially stable iff there exists P ∈ Sn, P ≻ 0 such that

ATP + PA ≺ 0.

This is a linear matrix inequality (LMI) in the unknown P ; feasibility is an SDP (minimize 0
subject to P ≻ 0 and the LMI). Lyapunov functions and LMIs are a central SDP application
area.

Combinatorial optimization. SDPs provide convex relaxations for many NP-hard problems.
These relaxations use the psd constraint to encode nonconvex quadratic constraints. Consider
a constraint xi ∈ {±1} for each i = 1, . . . , n. This constraint is equivalent to x2i = 1. Define
X = xxT ; then we can encode the same constraint as Xii = 1 for all i together with the nonconvex
rank constraint rank(X) = 1 and X ⪰ 0. Relaxing the rank constraint gives an SDP relaxation.
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Example 1.8 (Combinatorial relaxations: MaxCut). Given weights wij , the (NP-hard) Max-
Cut problem admits the standard SDP relaxation

maximize
1

4

∑
i,j

wij (1−Xij)

subject to Xii = 1, i = 1, . . . , n,
X ⪰ 0,

variable X ∈ Sn,

obtained by lifting xi ∈ {±1} to unit vectors vi with Xij = vTi vj . The relaxation is tight when
X⋆ is rank one; in general it gives an upper bound and supports randomized rounding with a
0.878 approximation ratio (Goemans–Williamson).

Eigenvalue optimization. The spectral radius surrogates λmax and λmin are SDP-representable:

λmax(X) ≤ t ⇐⇒ tI −X ⪰ 0 and λmin(X) ≥ ℓ ⇐⇒ X − ℓI ⪰ 0.

Thus problems like min{λmax(X) : X ∈ A} reduce to an SDP by introducing a scalar t and
enforcing tI −X ⪰ 0.

Exercise. Verify the equivalence λmax(X) ≤ t ⇐⇒ tI−X ⪰ 0. Then, formulate the problem

minimize λmax(X)
subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m,
variable X ∈ Sn

as an SDP in the scalar t and matrix X.

2 Convex cones and conic form

2.1 Convex cones

Recall the definition of a cone and convex cone.

Definition 2.1 (Cone, convex cone). A set K ⊆ Rn is a cone if x ∈ K and α ≥ 0 imply
αx ∈ K. It is a convex cone if, in addition, x, y ∈ K implies x+ y ∈ K. Equivalently,

x, y ∈ K, α, β ≥ 0 =⇒ αx+ βy ∈ K.

Example 2.2 (Canonical cones used in optimization). 1. Zero cone {0}.

2. Nonnegative orthant Rn
+ = {x ∈ Rn | xi ≥ 0}.

3. Second-order (Lorentz) cone Qn+1 = {(x, t) ∈ Rn × R | ∥x∥2 ≤ t}.

4. Positive semidefinite (psd) cone Sn+ = {X ∈ Sn | X ⪰ 0}.
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5. Exponential cone Kexp = {(x, y, z) ∈ R3 | y > 0, yex/y ≤ z}.

6. Sums and products: K1+K2 = {x1+x2 | xi ∈ Ki} and K1×K2 = {(x1, x2) | xi ∈ Ki}
are convex cones when K1,K2 are.

Proposition 2.3 (Basic properties). Let K ⊆ Rn be a convex cone.

(a) 0 ∈ K.

(b) If A ∈ Rm×n, then the image AK = {Ax | x ∈ K} is a convex cone.

(c) If L : Rn → Rm is linear, then the preimage L−1(K) = {x | Lx ∈ K} is a convex cone.

Proof. (a) With x ∈ K and α = 0, αx = 0 ∈ K. (b)–(c) follow from linearity and the definition.

Remark 2.4 (Proper cones). A cone K is called proper if it is closed, convex, pointed (K ∩
(−K) = {0}), and solid (has nonempty interior). Many duality results and algorithms assume
K is proper; the canonical cones in Example 2.2 are proper.

3 Conic duality

Conic duality generalizes LP duality to optimization problems over convex cones. In contrast to
general nonlinear duality, conic duality retains a clean and useful structure. For example, this
allows for the development of efficient algorithms with predictable behavior for conic problems,
such as interior-point methods for problems with quadratic objectives and inequality constraints
(via the second-order cone) and for semidefinite programming.

3.1 Dual cones

We will need the concept of a dual cone to construct conic dual optimization problems.

Definition 3.1 (Dual cone). The dual cone of a cone K ⊆ Rn is

K∗ = {y ∈ Rn | ⟨y, x⟩ ≥ 0 ∀x ∈ K}.

Proposition 3.2 (Basic properties of dual cones). Let K ⊆ Rn be a convex cone.

(a) K∗ is a closed convex cone.

(b) If K1 ⊆ K2, then K∗
2 ⊆ K∗

1 .

(c) (K∗)∗ = conv(K), the closed convex hull of K.

Proof. (a) Cone and convexity follow from linearity of the inner product. Closedness follows from
continuity of the inner product. (b) If y ∈ K∗

2 , then ⟨y, x⟩ ≥ 0 for all x ∈ K2; since K1 ⊆ K2,
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this holds for all x ∈ K1 as well, so y ∈ K∗
1 . (c) If y ∈ K∗, then ⟨y, x⟩ ≥ 0 for all x ∈ K; since

K ⊆ conv(K), this holds for all x ∈ conv(K) as well, so y ∈ conv(K)∗. Conversely, if y ∈ conv(K)∗,
then ⟨y, x⟩ ≥ 0 for all x ∈ conv(K); since conv(K) is the smallest closed convex set containing K,
this implies ⟨y, x⟩ ≥ 0 for all x ∈ K, so y ∈ K∗.

Definition 3.3 (Self-dual cone). A cone K is self-dual if K = K∗.

Many of the most important cones in optimization are self-dual: K = K∗. Examples include
the nonnegative orthant, the second-order cone, and the psd cone. We now prove self-duality of
the psd cone.

Proposition 3.4. The psd cone is self-dual. Moreover, with the trace inner product,

(Sn+)∗ = {Y ∈ Sn | ⟨X,Y ⟩ ≥ 0∀X ∈ Sn+} = Sn+.

Proof. If Y ⪰̸ 0, there exists u with uTY u < 0; then for X = uuT ⪰ 0, ⟨X,Y ⟩ = tr(uuTY ) =
uTY u < 0. Conversely, if Y ⪰ 0 then ⟨X,Y ⟩ = tr(RTRY ) = tr(RY RT ) ≥ 0 for X = RTR ⪰ 0. We
can see (RY RT ) ≥ 0 since for any v, vT (RY RT )v = (RT v)TY (RT v) ≥ 0.

3.2 Primal–dual conic optimization problems

We begin from the conic-form primal introduced earlier:

P :
minimize ⟨c, x⟩
subject to b−Ax ∈ K
variable x ∈ Rn,

(1)

where K ⊆ Rm is a convex cone. Define the slack s = b − Ax ∈ K. To construct the dual, we
introduce a Lagrange multiplier λ that acts on the cone, i.e., λ ∈ K∗ := {y | ⟨y, s⟩ ≥ 0 ∀s ∈ K}
(the dual cone).

Definition 3.5 (Lagrangian and dual function in conic form). The Lagrangian of the conic
standard form problem (1) is

L(x, λ) = ⟨c, x⟩ − ⟨λ, b−Ax⟩ = ⟨c+A∗λ, x⟩ − ⟨λ, b⟩,

where A∗ is the adjoint of A, defined by ⟨A∗w, x⟩ = ⟨w,Ax⟩. The dual function is

g(λ) = inf
x
L(x, λ) =

{
⟨−b, λ⟩ c+A∗λ = 0

−∞ otherwise
, λ ∈ K∗.

Recall that we construct the Lagrangian to ensure that it provides a lower bound on the primal
objective for any feasible x and dual-feasible λ. The adjoint identity defining A∗ is the standard
Hilbert-space relation and will be used repeatedly below. For real-valued matrices and vectors, A∗

is the transpose AT .
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Worked map for A∗ (used later for SDPs). If A : Sn → Rm is given by (AX)i = ⟨Ai, X⟩,
then ⟨A∗λ,X⟩ = ⟨λ,AX⟩ =

∑m
i=1 λi⟨Ai, X⟩ = ⟨

∑m
i=1 λiAi, X⟩ ,

Definition 3.6 (Conic dual problem). Maximizing the dual function yields the dual problem

D :
maximize ⟨−b, λ⟩
subject to c+A∗λ = 0,
variable λ ∈ K∗.

(2)

Remark 3.7 (Sign conventions and an equivalent dual). We have written our standard-form conic
optimization problem in inequality form. Some texts (and our LP unit) write the standard-form
problem with an equality constraint and x ∈ K. In this case, we arrive at a dual with objective
⟨b, λ̃⟩ and constraint c − A∗λ̃ = 0, where λ̃ := −λ ∈ K∗; this gives the familiar weak-duality
inequality ⟨c, x⟩ ≥ ⟨b, λ̃⟩. We will keep λ and D as stated above to remain consistent with the slides
on conic optimization. When we discuss an explicit dual for the standard-form SDP with equality
constraints, we will see the ⟨b, ·⟩ objective in the SDP dual.

3.3 Weak and strong duality

Proposition 3.8 (Weak duality). For any primal-feasible x and dual-feasible λ (i.e., b−Ax ∈
K, λ ∈ K∗, and c+A∗λ = 0),

⟨c, x⟩+ ⟨b, λ⟩ ≥ 0.

Proof. By feasibility of x and λ ∈ K∗, ⟨λ, b−Ax⟩ ≥ 0. Hence

⟨c, x⟩ ≥ ⟨c, x⟩ − ⟨λ, b−Ax⟩ = ⟨c+A∗λ, x⟩ − ⟨λ, b⟩ = −⟨λ, b⟩.

The value of the dual function g(λ) = ⟨−b, λ⟩ at dual-feasible λ, so ⟨c, x⟩ ≥ g(λ).

Corollary 3.9 (Weak duality of optimal values). Let p⋆ and d⋆ be the optimal values of P and
D. Then p⋆ ≥ d⋆.

Theorem 3.10 (Strong duality under Slater). Suppose the primal is feasible and satisfies
Slater’s condition: there exists x̄ with s̄ = b− Ax̄ ∈ intK. Then strong duality holds: p⋆ = d⋆.
Moreover the dual optimum is attained (and likewise by symmetry if a strictly feasible dual
exists).

Remark 3.11 (KKT conditions for conic programs). Under Slater, optimality is characterized by
the KKT system

Primal feasibility: s = b−Ax ∈ K,

Dual feasibility: λ ∈ K∗,

Stationarity: c+A∗λ = 0,

Complementary slackness: ⟨λ, s⟩ = 0.
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The last condition is complementary slackness: the optimal slack and dual variable are orthogonal.
(This is the conic analogue of y ≥ 0, s ≥ 0, yisi = 0 in LP.)

Geometric picture. If s = b−Ax ∈ ∂K at optimum, the dual vector λ ∈ K∗ defines a supporting
hyperplane {u | ⟨λ, u⟩ = 0} to K at s, and complementary slackness enforces that s lies on this
face.

3.4 Self-dual cones and SDPs

When K is self-dual (K = K∗), the primal and dual involve the same cone type. The three main
examples are LP (Rm

+ ), SOCP (Qn+1), and SDP (Sn+); see the dual-cones table.

Explicit SDP dual. Consider the standard-form SDP

minimize ⟨C,X⟩
subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m,

X ⪰ 0,
variable X ∈ Sn,

with inner product ⟨U, V ⟩ = tr(UTV ). The Lagrangian with multipliers λ ∈ Rm for the equalities
and S ⪰ 0 for the cone constraint is

L(X,λ, S) = ⟨C,X⟩ −
m∑
i=1

λi

(
⟨Ai, X⟩ − bi

)
− ⟨S,X⟩ =

〈
C −

∑
i λiAi − S, X

〉
+ bTλ.

Minimizing over X forces C −
∑

i λiAi −S = 0 (otherwise the infimum is −∞). Eliminating S ⪰ 0
yields the dual:

maximize bTλ
subject to C −

∑m
i=1Aiλi ⪰ 0,

which is an SDP again (self-duality of Sn+). Using the adjoint relation A∗λ =
∑

i λiAi justifies the
middle step.

Remark 3.12 (KKT for SDP). Under Slater (e.g., there exists X ≻ 0 with ⟨Ai, X⟩ = bi), optimality
is equivalent to

X ⪰ 0, C −
∑
i

Aiλi ⪰ 0, ⟨Ai, X⟩ = bi(i = 1, . . . ,m),
〈
C −

∑
iAiλi, X

〉
= 0.

The last line is matrix complementary slackness: ⟨S,X⟩ = 0 with S = C −
∑

iAiλi ⪰ 0.

Summary. Conic duality for P : min{⟨c, x⟩ | b − Ax ∈ K} yields a clean companion problem
in the dual cone K∗; weak duality is immediate from the Lagrangian, and strong duality follows
under Slater’s condition. For self-dual cones (LP/SOCP/SDP), the dual has the same cone type.
For SDPs this produces the familiar dual linear matrix inequality (LMI) C −

∑
iAiλi ⪰ 0.
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