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Lecture 10: Semidefinite Programming and Conic Optimization
Fall 2025 Prof. Udell

1 Semidefinite programs

1.1 Definition and notation

Let S” denote the space of n x n real symmetric matrices, and (A, B) := tr(ATB) = > AijBij
the trace inner product. We write X »= 0 to mean X is positive semidefinite (psd), i.e., vI'Xv >0
for all v € R™.

Definition 1.1 (Semidefinite program (SDP)). An SDP is an optimization problem of the

form
minimize (C, X)

subject to (A;, X) =0b;, i=1,...,m,
X >0
variable X e S,

where C, Aq,...,A,;, € S" and b € R™.

Remark 1.2 (Why SDPs matter). SDPs are convex optimization problems: any local optimum is
globally optimal. They strictly generalize linear programs (LPs) and admit efficient algorithms (e.g.,
interior-point methods; first-order methods for large scale). They arise across control (Lyapunov
inequalities), combinatorial optimization (convex relaxations such as MaxCut), and eigenvalue op-
timization (e.g., minimizing Apax)-

Recall some facts about psd matrices:

Proposition 1.3 (Equivalent characterizations of X = 0). For X € S", the following are

equivalent:
(a) X =0 (i.e., vI Xv >0 for allv).
(b) All eigenvalues of X are nonnegative.

(c) There exists a matriz R such that X = RTR. Any such R is called a square root of X
and may be written as X1/2.

Proof. (a) = (b): for any eigenpair (\,u) with |lullz = 1, u"Xu = A > 0. (b) = (c): take
R=A2UT when X = UAUT with A = 0. (c) = (a): vI'Xv = ||Rv|2 > 0. O

Proposition 1.4 (The psd cone is closed and convex). The set S} :={X € S* | X = 0} is a
closed convez cone.




Proof sketch. Cone and convexity follow from linearity of the quadratic form: if X > 0 and a > 0,
then v” (aX)v = av” Xv > 0, and sums preserve psd. Closedness follows from spectral continuity:
if X = X and X > 0, then eigenvalues \;(X}j) > 0 converge to A\;(X), so A;(X) > 0. O

Z ZC)}ESQ,X>—OiHa>O,c>O,and

ac — b*> > 0. Equivalently, defining ¢ = %< and u = %3¢, X = 0 iff

t > Vu? + b2,

so the cone S2 is linearly isomorphic to the second-order cone {(u,b,t) | vVu2 + b2 < t}.

Example 1.5 (A 2 x 2 psd matrix). For X = [

1.2 Geometric interpretation

Proposition 1.6 (Affine slice of a cone). The feasible set of the SDP is the intersection
F = {X es"| <A1,X> =b;,1 = 1,...,m}ﬂ§1.

Hence F is convex.

Proof. Direct from definitions and [Proposition 1.4} since the equality constraints define an affine
subspace and the psd constraint defines a convex cone, their intersection is convex. O

Remark 1.7 (Visual intuition). For n = 2, S? is 3-dimensional (coordinates (a,b,c) or (u,b,t)
above). The set SZ looks like a rotational “ice-cream” (second-order) cone in (u, b, t)-coordinates.
Imposing the affine equations (A4;, X) = b; slices this cone with a plane; the feasible set is a convex
(possibly empty or unbounded) cross-section.

1.3 Applications

Control (Lyapunov inequalities). A continuous-time linear system & = Ax is exponen-
tially stable iff there exists P € S”, P > 0 such that

ATP + PA <.

This is a linear matriz inequality (LMI) in the unknown P; feasibility is an SDP (minimize 0
subject to P = 0 and the LMI). Lyapunov functions and LMIs are a central SDP application
area.

Combinatorial optimization. SDPs provide convex relaxations for many NP-hard problems.
These relaxations use the psd constraint to encode nonconvex quadratic constraints. Consider
a constraint x; € {£1} for each i = 1,...,n. This constraint is equivalent to z? = 1. Define
X = z2”'; then we can encode the same constraint as X;; = 1 for all i together with the nonconvex
rank constraint rank(X) = 1 and X > 0. Relaxing the rank constraint gives an SDP relaxation.



Example 1.8 (Combinatorial relaxations: MaxCut). Given weights w;;, the (NP-hard) Max-
Cut problem admits the standard SDP relaxation

. 1
maximize 1 Z wij (1 — Xy5)
17-7

subject to X; =1, ¢=1,...,n,
X >0,
variable X e s,

obtained by lifting z; € {£1} to unit vectors v; with X;; = vlv;. The relaxation is tight when
X* is rank one; in general it gives an upper bound and supports randomized rounding with a
0.878 approximation ratio (Goemans—Williamson).

Eigenvalue optimization. The spectral radius surrogates Apax and Apin are SDP-representable:
Amax(X) <t <= tI-X =0 and Amin(X) >0 <= X — {1 = 0.

Thus problems like min{Amax(X) : X € A} reduce to an SDP by introducing a scalar ¢ and
enforcing tI — X > 0.

Exercise. Verify the equivalence Aax(X) <t <= tI—X = 0. Then, formulate the problem

minimize  Apax(X)
subject to (A, X)=0b;, 1=1,...,m,
variable X esr

as an SDP in the scalar ¢ and matrix X.

2 Convex cones and conic form

2.1 Convex cones

Recall the definition of a cone and convex cone.

Definition 2.1 (Cone, convex cone). A set K C R" is a cone if x € K and a > 0 imply
ax € K. It is a convex cone if, in addition, x,y € K implies x + y € K. Equivalently,

z,2yeK, a,>0 — ax+pPyckK.

Example 2.2 (Canonical cones used in optimization). 1. Zero cone {0}.
2. Nonnegative orthant R} = {z € R" | 2; > 0}.
3. Second-order (Lorentz) cone Q"' = {(z,t) € R® x R | ||z||2 < t}.

4. Positive semidefinite (psd) cone S = {X € S§" | X = 0}.




5. Exponential cone Ky, = {(z,9,2) € R? |y > 0, ye®/¥ < z}.

6. Sums and products: K1+ Ky = {x1+x2 | z; € K;} and K1 x Ko = {(z1,22) | 2; € K}
are convex cones when Ky, K5 are.

Proposition 2.3 (Basic properties). Let K C R™ be a convex cone.
(a) 0 € K.
(b) If A € R™*"  then the image AK = {Ax | x € K} is a convex cone.

(c) If L : R™ — R™ is linear, then the preimage L~ (K) = {x | Lz € K} is a convex cone.

Proof. (a) Withz € K and a =0, ax =0 € K. (b)—(c) follow from linearity and the definition. [I

Remark 2.4 (Proper cones). A cone K is called proper if it is closed, convex, pointed (K N
(—K) ={0}), and solid (has nonempty interior). Many duality results and algorithms assume
K is proper; the canonical cones in are proper.

3 Conic duality

Conic duality generalizes LP duality to optimization problems over convex cones. In contrast to
general nonlinear duality, conic duality retains a clean and useful structure. For example, this
allows for the development of efficient algorithms with predictable behavior for conic problems,
such as interior-point methods for problems with quadratic objectives and inequality constraints
(via the second-order cone) and for semidefinite programming.

3.1 Dual cones

We will need the concept of a dual cone to construct conic dual optimization problems.

Definition 3.1 (Dual cone). The dual cone of a cone K C R™ is

K*={yeR"| (y,z) >0Vx € K}.

Proposition 3.2 (Basic properties of dual cones). Let K C R"™ be a convex cone.
(a) K* is a closed convex cone.
(b) If K1 C Ky, then K5 C K.

(¢c) (K*)* =conv(K), the closed convex hull of K.

Proof. (a) Cone and convexity follow from linearity of the inner product. Closedness follows from
continuity of the inner product. (b) If y € K3, then (y,z) > 0 for all x € Ky; since K; C Ko,



this holds for all x € K as well, so y € Kf. (c¢) If y € K*, then (y,x) > 0 for all z € K; since
K C conv(K), this holds for all z € conv(K) as well, so y € conv(K)*. Conversely, if y € conv(K)*,
then (y,z) > 0 for all z € conv(K); since conv(K) is the smallest closed convex set containing K,
this implies (y,x) >0 for all z € K, so y € K*. O

Definition 3.3 (Self-dual cone). A cone K is self-dual if K = K*.

Many of the most important cones in optimization are self-dual: K = K*. Examples include
the nonnegative orthant, the second-order cone, and the psd cone. We now prove self-duality of
the psd cone.

Proposition 3.4. The psd cone is self-dual. Moreover, with the trace inner product,

(SP)* = {Y €S" | (X,Y) > 0¥X € ST} =S".

Proof. If Y # 0, there exists u with u?Yu < 0; then for X = uu? = 0, (X,Y) = tr(uu?Y) =
u'Yu < 0. Conversely, if Y >= 0 then (X,Y) = tr(RTRY) = tr(RYRT) > 0 for X = RTR > 0. We
can see (RY RT) > 0 since for any v, vT (RY RT)v = (RTv)TY (RTv) > 0. O

3.2 Primal-dual conic optimization problems

We begin from the conic-form primal introduced earlier:

minimize (¢, x)
P: subjectto b—Azr e K (1)
variable z € R",

where K C R™ is a convex cone. Define the slack s = b — Ax € K. To construct the dual, we
introduce a Lagrange multiplier A\ that acts on the cone, i.e., A € K* :={y | (y,s) > 0Vs € K}
(the dual cone).

Definition 3.5 (Lagrangian and dual function in conic form). The Lagrangian of the conic
standard form problem is

L(z,\) = (c,x) —(\,b— Azx) = (c+ A"\, z) — (\, D),
where A* is the adjoint of A, defined by (A*w, z) = (w, Axz). The dual function is

(=b,\) c+ A*A=0

i , A€ K™
—00 otherwise

g(A) = igfﬁ(m,)\) = {

Recall that we construct the Lagrangian to ensure that it provides a lower bound on the primal
objective for any feasible x and dual-feasible A. The adjoint identity defining A* is the standard
Hilbert-space relation and will be used repeatedly below. For real-valued matrices and vectors, A*
is the transpose AT



Worked map for A* (used later for SDPs). If A:S" — R™ is given by (AX); = (4;, X),
then (A"A, X) = (A AX) = S A (A X) = (7% Adi, X))

Definition 3.6 (Conic dual problem). Maximizing the dual function yields the dual problem

maximize (—b, \)
D: subject to c+ A\ =0, (2)
variable A e K™

Remark 3.7 (Sign conventions and an equivalent dual). We have written our standard-form conic
optimization problem in inequality form. Some texts (and our LP unit) write the standard-form
problem with an equality constraint and x € K. In this case, we arrive at a dual with objective
(b,\) and constraint ¢ — A*\ = 0, where A := —\ € K*; this gives the familiar weak-duality
inequality (¢, z) > (b, \). We will keep A and D as stated above to remain consistent with the slides
on conic optimization. When we discuss an explicit dual for the standard-form SDP with equality
constraints, we will see the (b, -) objective in the SDP dual.

3.3 Weak and strong duality

Proposition 3.8 (Weak duality). For any primal-feasible x and dual-feasible \ (i.e., b— Ax €
K, A€ K*, and c+ A*\ =0),
(c,x) + (b, \) > 0.

Proof. By feasibility of z and A € K*, (\,b — Az) > 0. Hence
<C,ZL‘> > <C, :C> - <)‘)b - A$> = <C+ A*)\,.’E> o <)‘vb> = 7<)‘) b>

The value of the dual function g(\) = (—b, ) at dual-feasible A, so (¢, z) > g(\).

Corollary 3.9 (Weak duality of optimal values). Let p* and d* be the optimal values of P and
D. Then p* > d*.

Theorem 3.10 (Strong duality under Slater). Suppose the primal is feasible and satisfies
Slater’s condition: there exists T with s =b— Az € intK. Then strong duality holds: p* = d*.
Moreover the dual optimum is attained (and likewise by symmetry if a strictly feasible dual
exists).

Remark 3.11 (KKT conditions for conic programs). Under Slater, optimality is characterized by
the KKT system

Primal feasibility: s=b—Ax € K,
Dual feasibility: A€ K*,
Stationarity: c+ A\ =0,
Complementary slackness: (A, s) =0.



The last condition is complementary slackness: the optimal slack and dual variable are orthogonal.
(This is the conic analogue of y >0, s >0, y;s; =0 in LP.)

Geometric picture. If s =b—Axr € 0K at optimum, the dual vector A € K* defines a supporting
hyperplane {u | (A\,u) = 0} to K at s, and complementary slackness enforces that s lies on this
face.

3.4 Self-dual cones and SDPs

When K is self-dual (K = K*), the primal and dual involve the same cone type. The three main
examples are LP (RT), SOCP (Q"*!), and SDP (S7); see the dual-cones table.

Explicit SDP dual. Consider the standard-form SDP

minimize (C, X)

subject to (A;, X)=0b;, 1=1,...,m,
X >0,

variable X e S,

with inner product (U, V) = tr(UTV). The Lagrangian with multipliers A € R™ for the equalities
and S > 0 for the cone constraint is

L(X,\,9) = (C,X) —i)\i(<Ai,X>—bi) - (S, X)= (C—=>,NA; =S, X) + blA
=1

Minimizing over X forces C' —) . \jA; — S = 0 (otherwise the infimum is —oo). Eliminating S > 0
yields the dual:

maximize bL\

subject to C' =37 A\ = 0,

which is an SDP again (self-duality of S7). Using the adjoint relation A*A =3 . A\;A; justifies the
middle step.

Remark 3.12 (KKT for SDP). Under Slater (e.g., there exists X > 0 with (4;, X) = b;), optimality
is equivalent to

The last line is matrix complementary slackness: (S, X) =0 with S =C -, A;\; = 0.

Summary. Conic duality for P : min{(c,z) | b — Az € K} yields a clean companion problem
in the dual cone K*; weak duality is immediate from the Lagrangian, and strong duality follows
under Slater’s condition. For self-dual cones (LP/SOCP/SDP), the dual has the same cone type.
For SDPs this produces the familiar dual linear matrix inequality (LMI) C' — > . A;\; = 0.
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