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1 Setup and conventions
We study gradient descent (GD) for unconstrained smooth optimization

m}%{n f(z), f differentiable, with an attained optimal value f* := min f(z).
r€R" T

The basic iteration with constant step size t > 0 is
M = gk v (b,

We also discuss line search strategies (e.g., Armijo backtracking) that choose t* adaptively.

First-order optimality (recall). If 2* minimizes a differentiable f, then V f(xz*) = 0.

2 Quadratic upper bound: L-smoothness

Definition 2.1 (Smoothness). A differentiable function f : R™ — R is L-smooth if for all z,y,

£(w) < @)+ V5@ (s~ 2) + 2y — =l

Equivalently (when V2f exists), [|[Vf(y) — Vf(z)| < L|ly — z|| and V?f(z) < LI for all x in
the domain.

Example 2.2 (Quadratic). For f(z) = 327 Az with A = 0, f is L-smooth with L = Apax(A).

3 Quadratic lower bound: p-strong convexity

Definition 3.1 (Strong convexity). A differentiable function f : R™ — R is u-strongly convex
if for all z, y,

@) 2 £(@) + V@) (g —=2) + Slly - all”

Equivalently (when V2f exists), V2f(z) = ul; and the gradient is u-coercive in the sense
IVf(y) = Vi@l = plly — ]




Example 3.2 (Quadratic). For f(z) = %xTA:U with A > 0, f is p-strongly convex with
1 = Amin(A) if and only if A > 0.

4 Some important losses: smoothness and strong convexity

Example 4.1 (Least squares and logistic regression). Let A € R™*" p € R™.

e Quadratic loss: f(x) = ||Az — b||? is smooth, and is strongly convex if A has full column
rank (Amin(ATA) > 0).

e Logistic loss: f(z) = Y ;% log(l + exp(biafa:)) is smooth; it is strongly convex on any
compact set when A has full column rank.

Worked details. For logistic loss, V2f(z) = AT D(z)A with D(z) = diag(o(s;)(1 — o(s;))) and
s;i =bialz, 500 < D(z) < 11, giving L < $Anax (AT A). On bounded sets that keep O'(SZ) € [9,1-4],
D(zx) = 6(1 = 0)I, giving p > 5(1 — 6) Amin (AT A).

5 Choosing the next iterate by optimizing the upper bound

Minimizing the quadratic upper model at z* yields

zFtl = argmin {f(a:k) + Vf(a:k)T(y — xk) + %Ily — $k\|2} =gk — %Vf@k)
y

Thus t = 1/L is the natural stepsize when L is known. (We will prove it guarantees decrease.)

Remark 5.1 (Quadratic approximation viewpoint). Replacing the Hessian by H = %I in the local
quadratic model yields z* = x — ¢tV f(z), i.e., gradient descent.

6 The Polyak-Lojasiewicz (PL) condition

Definition 6.1 (PL). A differentiable function f satisfies the u-PL inequality if

SIVI@I? > u(f@) ~ ) forallz.

PL does not require convexity and does not imply uniqueness of minimizers; under PL, objective
convergence does not necessarily imply iterate convergence.

Proposition 6.2 (Strong convexity = PL). If f is u-strongly convex, then f is p-PL.

Proof sketch. Minimize the strong convexity lower bound over y:

£+ 2 min{ 1(@) + V@) (y = 2) + §lly =2l } = £(0) = oIV F@,



where the minimum is attained at y = x — V f(z)/u. Rearranging gives the PL inequality. O

Example 6.3 (Compositions that are PL). If f(z) = g(Ax) with ¢ strongly convex and A
linear, then f satisfies a PL inequality (even when f is not strongly convex or convex) [? .
This covers least squares, and logistic regression on compact sets when A has full column rank.

7 Types and rates of convergence

Definition 7.1 (Objective and iterate convergence). We say GD achieves objective conver-
gence if f(z*) — f* and iterate convergence if ¥ — x*. Under strong convexity, objective
convergence implies iterate convergence; under PL, not necessarily (the minimizer set may be
a manifold).

Definition 7.2 (Rates). We say f(z%) — f* < *(f(2") — f*) for some ¢ € (0,1) is linear
(geometric) convergence, which appears as a straight line on a semilog plot; rates like O(1/k)
are sublinear and curve upward in semilog.

8 Main theorem: GD under L-smoothness and PL

Theorem 8.1 (GD is linearly convergent under PL). If f is L-smooth and p-PL, and x* exists,
then GD with t = 1/L satisfies

ra) - 1+ < (1= () - 7).

Proof. By L-smoothness with z = 2% and y = ¢! = 2% — %Vf(mk),

P < k) + VIR @ = ab) + Dkt - b = )~ IR

By PL, |V f(2")||* > 2u(f(2*) — f*); combine to get

fa =< (1= 2) (58 - 1)
and iterate. ]

Remark 8.2 (What improves with exact line search). Exact line search always does at least as well
as t = 1/L in function decrease, so the same linear rate bound holds (and can be faster in practice).

9 Sublinear rate on smooth convex functions

For completeness, we include the standard O(1/k) rate for convex L-smooth f (no PL).



Theorem 9.1 (GD on L-smooth convex f). If f is convex and L-smooth, GD with t = 1/L
satisfies

L *
flat) = £ < 55 20 = 2P,

Proof sketch. Combine the descent lemma f(z**+1) < f(2F) — 5 ||V f(2%)||? with convexity, f(z*)
f* < V(@) T (zF — 2*), and nonexpansiveness of the GD step, to telescope ||zFT! — z*||?
|z — 2*|2 — 2(f(2*) — f*). Summing over k yields the bound.

HRVAN

10 Line search and guaranteed decrease

Definition 10.1 (Armijo backtracking). Given ¢ € (0,1) and shrinkage factor 8 € (0, 1), set
t <+ 1 and decrease t + Gt until

flz—tVf(z)) < f(z) —ct|Vf(2)]

Proposition 10.2 (Armijo accepts small enough steps). If f is L-smooth, then Armijo with
any ¢ < % accepts any t < 1/L. In particular, the procedure always terminates.

Proof. By L-smoothness, f(z —tg) < f(z) — t||g||* + £t?||g||> with g = Vf(z). If t < 1/L, then
—t+ £42 < —1t hence f(z —tg) < f(z) — 4t[|g||?, which is Armijo with ¢ < 1. O

11 Quadratics: spectral viewpoint and exact line search
Consider f(z) = g2’ Az — "'z with A = 0 (unique minimizer z* = A~1b).
. 2
e With constant t € (0, m),

o=t = (= tA) @t —a?),  faf = at|la < pMla® —ala, p=max |1 —thi(A)].

e With exact line search,

Vf(@F)|1?
ty = argmin f(z* — aVf(z")) = Vfng{T(ZV)’L‘f(x’“)'

These formulas make the role of the condition number £ = Apax/Amin €xplicit and explain
zig-zagging in elongated valleys.




12 Practical convergence and local vs. global

Remark 12.1 (Exact line search dominates fixed t). For t = 1/L, the exact-line-search iterate
satisfies

K1y o E kYY) < ( E_ 1 k )
f@) =min f(e” —aVf(a")) < f rVI@E")),
so0 it never does worse (and is typically better) in function decrease.

Remark 12.2 (Local vs. global). Rates like Theoremare global under PL. For general nonconvex
f, PL may only hold in a neighborhood of a minimum (a local linear rate), even when iterates
globally decrease.

13 Worked examples

Example 13.1 (Least squares step sizes). Let f(z) = 1||Az — b||?. Then L = Apax(ATA). If
A has full column rank, g = Apin(A7A), so GD with ¢t = 1/L has linear rate (1 — u/L)* =
(1—1/k)*. (Compute L and g from the spectrum of AT A.)

Example 13.2 (Logistic regression step sizes). For f(z) = >, log(1 + exp(b;al x)), V2 f(z) =
ATD(z)A with 0 = D(x) =< i[, hence L < i)\max(ATA). On bounded domains with A full
column rank, p > 0 exists, giving linear convergence with GD. (Empirically, backtracking picks
steps near 1/L early on.)

Gotcha 13.3 (Units and step size). Gradients live in the dual space and carry units; zhtl =

xF — ¢V f(2¥) implies ¢ has units of (variable units)?. Mismatched units make ¢ hard to tune;
standardize features.

14 Summary: what to remember

e [-smooth = quadratic upper bound; p-strongly convex = quadratic lower bound.

e PL strictly generalizes strong convexity in the sense of convergence proofs; it applies beyond
convex functions.

e Under L-smooth + PL, GD with ¢t = 1/L converges linearly with rate (1 — u/L)F.
e For convex L-smooth f without PL, GD achieves O(1/k) sublinear rate.

e Backtracking Armijo guarantees sufficient decrease and terminates; exact line search often
accelerates.



Appendix A. The descent lemma (proof and variations)

Lemma 14.1 (Descent lemma). If f is L-smooth, then for all z,y,

F() < @)+ V(@) (v~ 2) + 2y — =

Proof. Define ¢(t) = f(z+t(y —z)). Then ¢/(t) = (y — 2)"Vf(z + t(y — z)) and

¢(1) = ¢(0) = /O ¢'(t), dt = /0 [VF(@) + (Vi +ty o) = V@) (v 2),dt.

. . .. L
Aprly Cauchy-Schwarz and Lipschitz continuity of Vf to bound the second term by 5|y —
x||%. O

Corollaries. (i) For GD with ¢t < 1/L, f(z"1) < f(a*) — (t — £¢2) ||V f(2")|%. (ii) With
t=1/L, f(zF*1) < f(a*) — 5|V f(2®)||* (used in Theorem [8.1).
Appendix B. Equivalent smoothness characterizations
Under twice differentiability, the following are equivalent:
L-smooth; «<; V2f(z) < LI Yz < |V f(y) — Vf(2)| < L||y — z| Vz,v.
(See Definition [2.1])
Appendix C. Quadratics in detail
For f(z) = 12T Az — b7z with A > 0:

L= Dmax(A), p=Anin(4), zF —o* = (T —tA) (" — 2.

The optimal fixed ¢ minimizes max; |1 —t\;(A)]|, attained at t = m, with rate p = :74_&
LAY 1P
in the A-norm; exact line search uses t; = %.

Appendix D. Backtracking always terminates

From Appendix A, f(z —tVf(2)) < f(z) —t[|Vf(2)|]> + £tV f(2)|>. For t < minl, L7,
the Armijo condition with ¢ < 1/2 holds. Hence halving will eventually find an acceptable t.
(This formalizes the slide’s “A: yes!” remark.)



Appendix E. PL without convexity

Example 14.2 (A nonconvex PL function). Let f(z) = 1dist(z, M)? where M is a closed
subspace; PL holds with ¢ = 1 though f is flat along M and not strongly convex. Under
PL, GD still decreases linearly in objective to f* = 0, but ¥ may converge only to the set
M (not to a unique point). (Compare the slides’ “river valley” comment.)

Appendix F. When GD diverges

For f(z) = 1Lz? in 1D, the GD map is 2™ = (1 — tL)a*. If t > 2/L, then ||1 — tL|| > 1 and
iterates diverge even though f is convex and smooth. This illustrates the tight stability range
t € (0,2/L) for quadratics.

Appendix G. Units, scaling, and step-size choice

Gradients inhabit the dual space: if x has units “meters,” V f can have units “1/meters,” so ¢
carries “meters®.” Poor scaling across coordinates makes a single global ¢ awkward; standard-
izing features and rescaling variables can make L and p more benign and GD more stable.
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