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1 Setup and conventions

We study gradient descent (GD) for unconstrained smooth optimization

min
x∈Rn

f(x), f differentiable, with an attained optimal value f⋆ := min
x

f(x).

The basic iteration with constant step size t > 0 is

xk+1 = xk − t∇f(xk).

We also discuss line search strategies (e.g., Armijo backtracking) that choose tk adaptively.

First-order optimality (recall). If x⋆ minimizes a differentiable f , then ∇f(x⋆) = 0.

2 Quadratic upper bound: L-smoothness

Definition 2.1 (Smoothness). A differentiable function f : Rn → R is L-smooth if for all x, y,

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
∥y − x∥2.

Equivalently (when ∇2f exists), ∥∇f(y) − ∇f(x)∥ ≤ L∥y − x∥ and ∇2f(x) ⪯ LI for all x in
the domain.

Example 2.2 (Quadratic). For f(x) = 1
2x

TAx with A ⪰ 0, f is L-smooth with L = λmax(A).

3 Quadratic lower bound: µ-strong convexity

Definition 3.1 (Strong convexity). A differentiable function f : Rn → R is µ-strongly convex
if for all x, y,

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
∥y − x∥2.

Equivalently (when ∇2f exists), ∇2f(x) ⪰ µI; and the gradient is µ-coercive in the sense
∥∇f(y)−∇f(x)∥ ≥ µ∥y − x∥.
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Example 3.2 (Quadratic). For f(x) = 1
2x

TAx with A ⪰ 0, f is µ-strongly convex with
µ = λmin(A) if and only if A ≻ 0.

4 Some important losses: smoothness and strong convexity

Example 4.1 (Least squares and logistic regression). Let A ∈ Rm×n, b ∈ Rm.

• Quadratic loss: f(x) = ∥Ax− b∥2 is smooth, and is strongly convex if A has full column
rank (λmin(A

TA) > 0).

• Logistic loss: f(x) =
∑m

i=1 log
(
1 + exp(bia

T
i x)

)
is smooth; it is strongly convex on any

compact set when A has full column rank.

Worked details. For logistic loss, ∇2f(x) = ATD(x)A with D(x) = diag
(
σ(si)(1− σ(si))

)
and

si = bia
T
i x, so 0 ⪯ D(x) ⪯ 1

4I, giving L ≤
1
4λmax(A

TA). On bounded sets that keep σ(si) ∈ [δ, 1−δ],
D(x) ⪰ δ(1− δ)I, giving µ ≥ δ(1− δ)λmin(A

TA).

5 Choosing the next iterate by optimizing the upper bound

Minimizing the quadratic upper model at xk yields

xk+1 = argmin
y

{
f(xk) +∇f(xk)T (y − xk) + L

2 ∥y − xk∥2
}
= xk − 1

L∇f(x
k).

Thus t = 1/L is the natural stepsize when L is known. (We will prove it guarantees decrease.)

Remark 5.1 (Quadratic approximation viewpoint). Replacing the Hessian by H = 1
t I in the local

quadratic model yields x+ = x− t∇f(x), i.e., gradient descent.

6 The Polyak- Lojasiewicz (PL) condition

Definition 6.1 (PL). A differentiable function f satisfies the µ-PL inequality if

1

2
∥∇f(x)∥2 ≥ µ

(
f(x)− f⋆

)
for all x.

PL does not require convexity and does not imply uniqueness of minimizers; under PL, objective
convergence does not necessarily imply iterate convergence.

Proposition 6.2 (Strong convexity ⇒ PL). If f is µ-strongly convex, then f is µ-PL.

Proof sketch. Minimize the strong convexity lower bound over y:

f⋆ ≥ min
y

{
f(x) +∇f(x)T (y − x) + µ

2∥y − x∥2
}
= f(x)− 1

2µ
∥∇f(x)∥2,
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where the minimum is attained at y = x−∇f(x)/µ. Rearranging gives the PL inequality.

Example 6.3 (Compositions that are PL). If f(x) = g(Ax) with g strongly convex and A
linear, then f satisfies a PL inequality (even when f is not strongly convex or convex) [? ].
This covers least squares, and logistic regression on compact sets when A has full column rank.

7 Types and rates of convergence

Definition 7.1 (Objective and iterate convergence). We say GD achieves objective conver-
gence if f(xk) → f⋆ and iterate convergence if xk → x⋆. Under strong convexity, objective
convergence implies iterate convergence; under PL, not necessarily (the minimizer set may be
a manifold).

Definition 7.2 (Rates). We say f(xk) − f⋆ ≤ ck(f(x0) − f⋆) for some c ∈ (0, 1) is linear
(geometric) convergence, which appears as a straight line on a semilog plot; rates like O(1/k)
are sublinear and curve upward in semilog.

8 Main theorem: GD under L-smoothness and PL

Theorem 8.1 (GD is linearly convergent under PL). If f is L-smooth and µ-PL, and x⋆ exists,
then GD with t = 1/L satisfies

f(xk)− f⋆ ≤
(
1− µ

L

)k(
f(x0)− f⋆

)
.

Proof. By L-smoothness with x = xk and y = xk+1 = xk − 1
L∇f(x

k),

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) +
L

2
∥xk+1 − xk∥2 = f(xk)− 1

2L
∥∇f(xk)∥2.

By PL, ∥∇f(xk)∥2 ≥ 2µ
(
f(xk)− f⋆

)
; combine to get

f(xk+1)− f⋆ ≤
(
1− µ

L

)(
f(xk)− f⋆

)
and iterate.

Remark 8.2 (What improves with exact line search). Exact line search always does at least as well
as t = 1/L in function decrease, so the same linear rate bound holds (and can be faster in practice).

9 Sublinear rate on smooth convex functions

For completeness, we include the standard O(1/k) rate for convex L-smooth f (no PL).
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Theorem 9.1 (GD on L-smooth convex f). If f is convex and L-smooth, GD with t = 1/L
satisfies

f(xk)− f⋆ ≤ L

2k
, ∥x0 − x⋆∥2.

Proof sketch. Combine the descent lemma f(xk+1) ≤ f(xk)− 1
2L∥∇f(x

k)∥2 with convexity, f(xk)−
f⋆ ≤ ∇f(xk)T (xk − x⋆), and nonexpansiveness of the GD step, to telescope ∥xk+1 − x⋆∥2 ≤
∥xk − x⋆∥2 − 2

L

(
f(xk)− f⋆

)
. Summing over k yields the bound.

10 Line search and guaranteed decrease

Definition 10.1 (Armijo backtracking). Given c ∈ (0, 1) and shrinkage factor β ∈ (0, 1), set
t← 1 and decrease t← βt until

f(x− t∇f(x)) ≤ f(x)− ct∥∇f(x)∥2.

Proposition 10.2 (Armijo accepts small enough steps). If f is L-smooth, then Armijo with
any c ≤ 1

2 accepts any t ≤ 1/L. In particular, the procedure always terminates.

Proof. By L-smoothness, f(x − tg) ≤ f(x) − t∥g∥2 + L
2 t

2∥g∥2 with g = ∇f(x). If t ≤ 1/L, then
−t+ L

2 t
2 ≤ −1

2 t, hence f(x− tg) ≤ f(x)− 1
2 t∥g∥

2, which is Armijo with c ≤ 1
2 .

11 Quadratics: spectral viewpoint and exact line search

Consider f(x) = 1
2x

TAx− bTx with A ≻ 0 (unique minimizer x⋆ = A−1b).

• With constant t ∈
(
0, 2

λmax(A)

)
,

xk+1 − x⋆ = (I − tA)(xk − x⋆), ∥xk − x⋆∥A ≤ ρk∥x0 − x⋆∥A, ρ = max
i
|1− tλi(A)|.

• With exact line search,

tk = argmin
α≥0

f(xk − α∇f(xk)) = ∥∇f(xk)∥2

∇f(xk)TA∇f(xk)
.

These formulas make the role of the condition number κ = λmax/λmin explicit and explain
zig-zagging in elongated valleys.
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12 Practical convergence and local vs. global

Remark 12.1 (Exact line search dominates fixed t). For t = 1/L, the exact-line-search iterate
satisfies

f(xk+1) = min
α≥0

f
(
xk − α∇f(xk)

)
≤ f

(
xk − 1

L∇f(x
k)
)
,

so it never does worse (and is typically better) in function decrease.

Remark 12.2 (Local vs. global). Rates like Theorem 8.1 are global under PL. For general nonconvex
f , PL may only hold in a neighborhood of a minimum (a local linear rate), even when iterates
globally decrease.

13 Worked examples

Example 13.1 (Least squares step sizes). Let f(x) = 1
2∥Ax− b∥2. Then L = λmax(A

TA). If
A has full column rank, µ = λmin(A

TA), so GD with t = 1/L has linear rate (1 − µ/L)k =
(1− 1/κ)k. (Compute L and µ from the spectrum of ATA.)

Example 13.2 (Logistic regression step sizes). For f(x) =
∑

i log(1 + exp(bia
T
i x)), ∇2f(x) =

ATD(x)A with 0 ⪯ D(x) ⪯ 1
4I, hence L ≤ 1

4λmax(A
TA). On bounded domains with A full

column rank, µ > 0 exists, giving linear convergence with GD. (Empirically, backtracking picks
steps near 1/L early on.)

Gotcha 13.3 (Units and step size). Gradients live in the dual space and carry units; xk+1 =
xk − t∇f(xk) implies t has units of (variable units)2. Mismatched units make t hard to tune;
standardize features.

14 Summary: what to remember

• L-smooth ⇒ quadratic upper bound; µ-strongly convex ⇒ quadratic lower bound.

• PL strictly generalizes strong convexity in the sense of convergence proofs; it applies beyond
convex functions.

• Under L-smooth + PL, GD with t = 1/L converges linearly with rate (1− µ/L)k.

• For convex L-smooth f without PL, GD achieves O(1/k) sublinear rate.

• Backtracking Armijo guarantees sufficient decrease and terminates; exact line search often
accelerates.
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Appendix A. The descent lemma (proof and variations)

Lemma 14.1 (Descent lemma). If f is L-smooth, then for all x, y,

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
∥y − x∥2.

Proof. Define ϕ(t) = f
(
x+ t(y − x)

)
. Then ϕ′(t) = (y − x)T∇f(x+ t(y − x)) and

ϕ(1)− ϕ(0) =

∫ 1

0
ϕ′(t), dt =

∫ 1

0

[
∇f(x) + (∇f(x+ t(y − x))−∇f(x))

]T
(y − x), dt.

Apply Cauchy-Schwarz and Lipschitz continuity of ∇f to bound the second term by L
2 ∥y −

x∥2.

Corollaries. (i) For GD with t ≤ 1/L, f(xk+1) ≤ f(xk) −
(
t − L

2 t
2
)
∥∇f(xk)∥2. (ii) With

t = 1/L, f(xk+1) ≤ f(xk)− 1
2L∥∇f(x

k)∥2 (used in Theorem 8.1).

Appendix B. Equivalent smoothness characterizations

Under twice differentiability, the following are equivalent:

L-smooth;⇐⇒;∇2f(x) ⪯ LI ∀x⇐⇒ ∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥ ∀x, y.

(See Definition 2.1.)

Appendix C. Quadratics in detail

For f(x) = 1
2x

TAx− bTx with A ≻ 0:

L = λmax(A), µ = λmin(A), xk+1 − x⋆ = (I − tA)(xk − x⋆).

The optimal fixed t minimizes maxi ∥1− tλi(A)∥, attained at t = 2
λmax+λmin

, with rate ρ = κ−1
κ+1

in the A-norm; exact line search uses tk = ∥∇f(xk)∥2
∇f(xk)TA∇f(xk)

.

Appendix D. Backtracking always terminates

From Appendix A, f(x − t∇f(x)) ≤ f(x) − t∥∇f(x)∥2 + L
2 t

2∥∇f(x)∥2. For t ≤ min 1, L−1,
the Armijo condition with c ≤ 1/2 holds. Hence halving will eventually find an acceptable t.
(This formalizes the slide’s “A: yes!” remark.)
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Appendix E. PL without convexity

Example 14.2 (A nonconvex PL function). Let f(x) = 1
2dist(x,M)2 whereM is a closed

subspace; PL holds with µ = 1 though f is flat alongM and not strongly convex. Under
PL, GD still decreases linearly in objective to f⋆ = 0, but xk may converge only to the set
M (not to a unique point). (Compare the slides’ “river valley” comment.)

Appendix F. When GD diverges

For f(x) = 1
2Lx

2 in 1D, the GD map is xk+1 = (1− tL)xk. If t > 2/L, then ∥1− tL∥ > 1 and
iterates diverge even though f is convex and smooth. This illustrates the tight stability range
t ∈ (0, 2/L) for quadratics.

Appendix G. Units, scaling, and step-size choice

Gradients inhabit the dual space: if x has units “meters,” ∇f can have units “1/meters,” so t
carries “meters2.” Poor scaling across coordinates makes a single global t awkward; standard-
izing features and rescaling variables can make L and µ more benign and GD more stable.
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