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This unit develops a compact framework that unifies three important algorithms: proximal gra-
dient (forward-backward splitting), Douglas-Rachford splitting, and ADMM. These algorithms are
general enough to solve arbitrary convex optimization problems, including conic optimization prob-
lems, without the extremely high per-iteration computation complexity of interior point methods.
They access the functions involved in the problem through one of two interfaces: either a gradient
(first-order) oracle, or a proximal oracle, which generalized projection. With some abuse of termi-
nology, these algorithms are generally called first-order algorithms, as they require no access to the
Hessian.

We will understand these optimization algorithms by identifying solutions of convex optimiza-
tion problems with fixed points of an operator T : R®™ — R". To provide a preview, we will
show

mxinf(x) +g(x) <= 0€0f(x)+09(x) = a=T(z).

When this operator T is either contractive or averaged (terms that we will define below), we will
show convergence of the algorithm to a global optimum using this operator perspective.

1 Introduction and computational motivation

1.1 Motivation and examples
Many models decompose naturally into a smooth loss and a nonsmooth regularizer or constraint:
min f(z) + g(z).
Typical instances:
e Lasso: f(z) = %HAZL‘ —b||%, g(z) = \||z||1.
e Box- or set-constrained least squares: f(z) = 3| Az — b[|%, g(z) = 1q(z) for a convex set Q.
e Total variation denoising: f(z) = 3|z — b||%, g(x) = A||Dz|).

We will solve these by splitting the problem structure so each iteration evaluates either a gradient
of f or a proximal operator (projection or shrinkage) for g.
We can even write a conic optimization problem
minimize ¢’z
subject to Ax =b
reK

for some cone K, in a similar form:
minimize ¢’z 4+ 1x(2)
subject to Ax = z.

We will develop algorithms in this unit to solve all of the above problems efficiently, at least to
moderate accuracy (le-3 or le-4).



1.2 The proximal mapping

Definition 1.1 (Proximal operator). For proper closed convex h and v > 0,
prox.,(z) = argmin (h(x) + %Hx — zH2>.
xX

Then prox,; = Jygh.

Let’s look at some examples.

Geometric picture (projection). For a convex set C, the proximal operator of the indicator
function is the projection onto the set:

prox; ,(z) = projc(z) = argmin ||z — 2|2
xeC

Box constraints. The proximal operator of the indicator function of a box is clipping:

proxy, . (z) = min{max{z,l},u}
Soft-thresholding. The proximal operator of the #; norm is soft-thresholding:

prox. | (z) = sign(z) - max{|z| —v,0}

applied elementwise. Proof: from the optimality condition of the prox definition. First notice that
the problem separates across coordinates, so we can consider a single coordinate z. The optimality
condition is

0 € d|x| + %(x —2).

We consider three cases:
o If z > 0, then 0|x| =1, soOzl—F%(a:—z) giving x = z — 7.
o If z <0, then Olz| =—1,500=—-1+ %(m—z) giving x = z + 7.
e If =0, then J|z| = [-1,1],s0 0 € [-1,1] + %(—z) giving |z| <.
Combining these cases gives the soft-thresholding formula.
1.3 Proximal gradient method
Suppose f is smooth, g is non-smooth. The proximal gradient method solves
minimize f(z) + g(z)
using proximal operators together with gradient steps. The iteration is simple:

zt = prox,,(z — tV f(z)).



e The proximal operator steps towards the minimum of g, and

e the gradient method steps towards minimum of f.

The lasso demo in class, also found at https://github.com/stanford-cme-307/demos/, demon-
strates the power of this method. The remainder of the notes is devoted to analyzing this method
and related methods, and showing their convergence.

2 Review

We first recall a few definitions from earlier units, and define a few more. In much of what follows,
we’ll need to assume functions are

Definition 2.1 (CCP function). e closed: epi(f) is a closed set
e convex: f is convex

e proper: dom f is non-empty
which we abbreviate as CCP (closed, convex, proper).

Definition 2.2 (Subdifferential). For a proper closed convex function h : R™ — R U o0, the
subdifferential at x is

Oh(z) ={veR": h(y) > h(z) + (v,y — x) for all y}.

If h is differentiable at z, then Oh(x) = Vh(x).

We will use subdifferentials to express optimality conditions for convex optimization problems,
such as the problem of minimizing a sum of CCP functions.

Proposition 2.3 (First-order optimality). For CCP functions f,g : R® — R, a point z*
minimizes f + g if and only if
0 € df(z*) + dg(x™).

3 Relations

Definition 3.1 (Relation). A relation R on R" is a subset of R™ x R™.
e We write dom R = {z: (z,y) € R}
e Welet R(z) ={y: (x,y) € R}

e If R(x) is always empty or a singleton, we say R is a function. We often call such a
relation a map or an operator to distinguish it from a real-valued function.

Any function F': R™ — R" defines a relation {(z, F(z)) : ¢ € dom F'}.


https://github.com/stanford-cme-307/demos/

Example 3.2 (Important relations). The following relations will be important in what follows:
e empty relation: ()
o full relation: R™ x R"
e identity: {(z,z):z € R"}
e zero: {(z,0) : x € R"}
e subdifferential: f = {(z,¢9: 2 € dom f,g € 0f(x)}

More concretely, consider the subdifferential of the absolute value function:

{-1}, =<0
Olz| =4 [-1,1], =0
{1}, x>0

This is a relation that is not a function, since 0|0| contains more than one point. We write the
associated relation concretely as

dz| = {(z,u) :u€d|z|} ={(z,-1) : 2 < 0} U{(0,u) : uw € [-1,1]} U{(x,1) : z > 0}.

Exercise 3.3. Plot the graph of the relation 0|z|.

Definition 3.4 (Operations on relations). If R and S are relations, define
e composition: RS = {(x,z2): (z,y) € R, (y,2) € S}
e addition: R+ S = {(z,y+ 2) : (z,y) € R, (z,2) € S}

e inverses: R~ = {(y,2) : (z,9) € R}

We use inequality on sets to mean the inequality holds for any element in the set, e.g.,

f) = f@)+0f"(y — ).

Example 3.5 (Fenchel duality via relations). Recall the definition of the Fenchel dual: f*(y) :=
max, (y'z — f(z)). We will prove 9f* = df~ 1.



To show this, recall that if f is CPP, (f*)* = f** = f, so

(u,v) € )~ (v,u) € Of
u € df(v)
0€df(v)—u
Tz)

v € argmin(f(z) —u x
x

v € argmax(ulz — f(x))

F) + f*(u) = ulo

u € argl;naX(yTU — ()

0€v—0f"(u)
(u,v) € Of*

[ A A

Exercise 3.6. As a concrete application, use the result 9f* = 9f~! to compute the Fenchel dual
of the absolute value function f(z) = |z|.

4 Fixed points and zeros

The fixed-point viewpoint unifies many first-order algorithms. Instead of searching directly for the
optimizer of a function, we search for a point that is left unchanged by an appropriately chosen
operator. Throughout these notes we let F': R" — R™ denote a (possibly set-valued) operator.

Definition 4.1 (Zero of a relation). Let R be a relation. A point x is a zero of R if 0 € R(z),
i.e., the graph of R contains (,0). The zero set of R is R71(0) = {x : (z,0) € R}.

Every convex optimization problem can be written as the search for a zero of a subdifferential.
Indeed, x minimizes f precisely when 0 € df(z). This equivalence gives us a dictionary between
optimality conditions and zero problems.

Example 4.2 (Zeros arising in optimization). Consider f(z) = %||Az — b|? with full-column-
rank A. The optimality condition is 0 € Vf(z) = AT(Axz — b), so the zero set is the affine
subspace {z : ATAzr = ATb}. For nonsmooth functions such as f(x) = A||z|;, the zero

condition becomes 0 € A\J||z||1.

4.1 Lipschitz, nonexpansive, and contractive operators

Definition 4.3 (Lipschitz operator). A relation F'is Lipschitz with constant L > 0 if ||u—ov]|| <

L|jz — y| for all (z,u),(y,v) € F. We call F' nonexpansive when L < 1 and contractive when
L <1




When F' is Lipschitz, the inequality with £ = y implies u = v, so F' must in fact be a function
rather than a multi-valued relation. Nonexpansive maps preserve distances while contractive maps
actively shrink them.

Example 4.4 (A small catalog of Lipschitz maps).

e Rotations and translations in R™ are nonexpansive: they change angles or positions but
never stretch vectors.

e The map x — cx with |¢| < 1 is contractive since it scales every distance by |c|.

e Projections onto a closed convex set C satisfy ||projo(z) —projo(y)| < ||z —yl|, so they
are nonexpansive.

Proposition 4.5 (Gradient update Lipschitz constant). Assume f is a-strongly convex and
B-smooth. For any step size t > 0 the gradient update

Gi(z) = & — tV f(2)

is Lipschitz with constant L = max{|l — ta|,|1 — tB8|}, hence it is contractive whenever t €

(0,2/(ec + B)).-

Proof. By the fundamental theorem of calculus, G¢(z)—G(y) = fol (I—tV2f(0z+(1-0)y))(z—y) db.
Taking norms and using Jensen’s inequality gives

1
1G () = Ge(y)ll < /0 1 = tV2 (0 + (1 = O)y)|| ll= — yl|de.

The Hessian satisfies af < V2f < 81, so the integrand is bounded by max{|1—ta/, |1 —t3|} ||z —yll,
yielding the stated Lipschitz constant. O

Corollary 4.6 (Best constant step). Choosing t = 2/(a+ [3) minimizes the Lipschitz constant
and gives L = (k — 1)/(k 4+ 1) where k = B/« is the condition number.

4.2 Proximal maps

Proposition 4.7 (Proximal maps are (firmly) nonexpansive). For any closed convex function
[ the prozimal operator prox; satisfies |prox(z) — prox,(y)|| < [lz —yl|.

Proof. Let u = prox;(z) and v = prox;(y). Then z —u € Jf(u) and y —v € Jdf(v). The
subgradient inequality applied twice gives f(v) > f(u)+(r—u,v—u) and f(u) > f(v)+{y—v,u—wv).
Summing yields (z — y,u — v) > ||u — v||?, so Cauchy-Schwarz implies ||u — v|| < ||z — y]|. O

The intermediate inequality shows that prox; is firmly nonexpansive: (x —y,u—uv) > |Ju—uv|*.
This property is stronger than nonexpansiveness and will be useful later.



Proposition 4.8 (Strongly convex prox is contractive). If f is a-strongly conver, then prox §
is (14 2a)~L-contractive.

Proof. With the same notation as above, strong convexity produces the modified inequalities
J@) = flu) + (z —uv—u) +allo—ul®  flu) > f(v) +{y —v,u—v) +afu—v]
Adding and simplifying gives
(@ —y,u—v) > (1+2a)[lu—v|?

hence |lu —v|| < (1 +2a)~ Y|z —y||.

4.3 Fixed points

Definition 4.9 (Fixed point). A point z is a fized point of F if F(x) = x. The set Fix(F) =
{z : F(z) = z} plays the role of the solution set.

Example 4.10 (Fixed points of simple maps).
e For the identity map F'(x) = x every point is a fixed point.
e For the constant map F(z) = 0 the unique fixed point is 0.

e A translation F(z) = z+a with a # 0 is nonexpansive but has no fixed point, illustrating
that nonexpansive maps need not have fixed points.

Proposition 4.11 (Fixed point of proximal gradient map). Suppose f : R™ — R is differ-
entiable and g : R™ — R is prozable, and let t > 0. Any fized point of the proximal gradient
iteration minimizes f + g.

Proof. Use the definition of the proximal operator to check
T = prox,,(r) = x' = (I +tdg) " (z)

The point & minimizes f + g iff

0 € Vf(z)+9g(x)

r € tVf(x)+z+tdg(z)
(I—tVf)(xz) € (I+tdg)(x)

z € (I+tdg) 1(I—-tVf)(x)



Proposition 4.12 (Uniqueness for contractions). If F' is contractive, then it has at most one
fixed point.

Proof. Suppose both z and y are fixed points. Then ||z — y|| = |[F(z) — F(y)|| < L|jz — y|| with
L < 1, forcing x = y. O

Theorem 4.13 (Banach fixed point). Let F' be a contraction with constant L < 1. The
iteration tF T = F(2*) converges from any starting point 2° to the unique fized point x*, and
the errors satisfy ||z* — z*|| < L¥||2° — 2*]|.

Proof. Because ||z"t1 — 2| < L||a*¥ — 2¥~1||, a telescoping sum shows the sequence is Cauchy. Let
x* be the limit. Continuity of F' gives 2* = limy_,, F(2¥71) = F(2*), so 2* is the desired fixed
point. Finally, ||2* — 2*| = | F(2*~!) — F(2*)|| < L||2*~! — 2*||, which recursively yields the linear
rate. O

The iterates of a contraction are Fejér monotone: the distance to x* never increases. This
property will continue to hold for averaged operators, giving intuition for why damped iterations
are stable.

5 Averaged Operators

We have seen that many important maps are nonexpansive, but not contractive. To develop
algorithms that make use of these operators, but guarantee convergence, we introduce averaged
operators. Averaged operators interpolate between a nonexpansive map and the identity,
retaining enough damping to guarantee convergence while permitting more general behavior.

Definition 5.1 (Averaged operator). An operator F' is averaged if there exists 6 € (0, 1)
and a nonexpansive map G such that F' = (1 —0)I + 0G. When 6 = 1/2 the map is firmly
nonexpansive.

Geometrically, an averaged step moves partway towards the action of G and partway towards
the previous iterate, preventing the oscillations that plague undamped nonexpansive maps such
as rotations.

Example 5.2 (Why nonexpansive needs damping). Let G rotate points in R? by ninety
degrees. Then ||Gz|| = ||z||, so G is nonexpansive, but unless 2° starts at the origin the
iteration z**t! = Ga* simply spins around the origin. The averaged map F = %(I + G)
shrinks the radius each step, and z* spirals toward the unique fixed point at the origin.

Proposition 5.3 (Fixed points of averaged maps). If F = (1 — 0)I + 0G with 0 < § < 1,
then x is a fived point of F if and only if it is a fixed point of G.

Proof. The equality x = Fx expands to x = (1 — 0)x 4+ Gz, so 6(x — Gz) = 0. Since § > 0,
we conclude x = Gz. The reverse implication is immediate. O




Theorem 5.4 (Krasnosel’skii-Mann iteration). Let F' = (1 — 60)I + G be averaged with a
fized point. Then the fized-point iteration x*+' = F(x*) converges to a fived point of F for
every starting point. Moreover, the residual obeys

=@ — 2*|?

) _ g2 <« 27 ="
16z =20 < G haa o)

Although the bound is sublinear, the Fejér property ensures the iterates remain stable. In
practice we often combine averaging with momentum or relaxation to accelerate convergence.

5.1 Averaged gradient maps

Proposition 5.5 (Gradient descent is averaged). If f is [-smooth, then I — %V f s
nonexpansive. Hence I —tV f is averaged for every t € (0,2/5).

Proof. Smoothness implies |V f(z) — Vf(y)|| < Bllz — y||. We compute
2

7 =3

V() - (I - ;vmy)w = eyl - §<x V(@) — Vi)

+;2||Vf<x> Vi)

< o -yl

6 Proximal Gradient Method

We are now ready to analyze the proximal gradient method for minimizing f + g where f is smooth
and g is CCP. We have already established that fixed points of the proximal gradient map

T'(x) = prox,,(z — tV f(z))

are minimizers of f 4+ g. To show convergence of the iteration 2¥+1 = T'(z¥), we need to show that
T is contractive (for linear convergence) or averaged (for sublinear convergence).

Proposition 6.1 (Proximal-gradient convergence). Let f be $-smooth and g be CCP. For any
t € (0,2/p) the proximal-gradient map

T(z) = prox,,(z — 1V f(x))

is averaged, and the iteration x*+1 = T'(2*) converges to a minimizer of f + g. If either f or
g 1s strongly conver, the convergence is linear.




Proof. The operator I —tV f is averaged by the previous proposition, while prox,, is firmly non-
expansive. The composition of a firmly nonexpansive map with an averaged map is averaged, es-
tablishing convergence by the Krasnosel’skii-Mann theorem. Strong convexity of f makes I —tV f
contractive; strong convexity of g makes prox,, contractive, and either case transfers the linear
rate to T O

Example 6.2 (Interpreting the theory).

e LASSO. Here f(z) = 3||Az — b||? is smooth with 8 = ||A[3, g(z) = A||z||; admits the
soft-thresholding prox, and the theory predicts O(1/k) convergence with step sizes below
2/||Al|3. Adding an /5 term renders g strongly convex and yields linear convergence.

e Box-constrained least squares. Taking g to be the indicator of [I, u] shows proximal
gradient alternates between a gradient step and a simple projection, again converging
globally.

e Logistic regression with ¢; penalty. The gradient of the logistic loss is Lipschitz with
constant given by the largest singular value of the design matrix, so the theory prescribes
a safe step size and guarantees convergence of iterates often used in practice.
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