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1 LP geometry: standard form

We study the geometry of feasibility for the standard-form linear program

minimize c⊤x
subject to Ax = b,

x ≥ 0,
variable x ∈ Rn,

focusing on two equivalent geometric views and basic convexity facts that will underlie extreme
points and basic feasible solutions (BFS) later in the unit. Writing the LP in standard form makes
it easy to understand the geometry of the problem that motivates the simplex algorithm.

1.1 View 1: conic hull of the columns

Let A = [A1, . . . , An] ∈ Rm×n with columns Ai ∈ Rm.

Definition 1.1 (Cone). A set K ⊆ Rm is a cone if it contains the ray from the origin to any
vector in the cone:

v ∈ K,α ≥ 0 =⇒ αv ∈ K.

We will most often be interested in a cone generated from a collection of vectors:

Definition 1.2 (Conic hull of vectors). The conic hull of the vectors A1, . . . , An ∈ Rm is

cone(A1, . . . , An) :=

{
n∑

i=1

Aixi | x ≥ 0

}
.

Exercise. To check this definition makes sense, prove that cone(A1, . . . , An) is a cone.

Proposition 1.3. The image of the nonnegative orthant is a finitely generated cone.

{Ax | x ≥ 0} = cone(A1, . . . , An).

Proof. If x ≥ 0, then Ax =
∑n

i=1Aixi ∈ cone(a1, . . . , an). Conversely, any y =
∑n

i=1Aiαi with
αi ≥ 0 equals Ax for x = (α1, . . . , αn) ≥ 0.
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Proposition 1.4 (Feasibility criterion (conic view)). The LP is feasible if and only if b ∈
cone(a1, . . . , an).

Proof. By definition, feasibility requires an x ≥ 0 with Ax = b. By Proposition 1.3, this holds if
and only if b lies in the cone generated by the columns.

1.2 Carathéodory for cones*

Theorem 1.5 (Carathéodory for cones). If b ∈ cone(A1, . . . , An) ⊂ Rm, then b can be expressed
using at most m generators: there exists an index set S ⊆ 1, . . . , n with |S| ≤ m and coefficients
{xi}i∈S, xi ≥ 0, such that b =

∑
i∈S αiAi.

Proof sketch. Start from any conic representation b =
∑n

i=1 xiai with xi ≥ 0. Let S = {i : αi > 0}.
If |S| ≤ m, we are done. Otherwise the set Aii∈S is linearly dependent in Rm, so there exists a
nonzero δ ∈ R|S| with

∑
i∈S δiAi = 0. We can assume δ has at least one entry that is negative.

(Otherwise, use −δ instead.) Move along the ray x 7→ x + tδ for t > 0, increasing t until at least
one active coefficient hits zero, strictly reducing |S|. Iterate until |S| ≤ m.

Corollary 1.6 (Feasible solution with few positives). If the LP is feasible, then there exists a
feasible x with at most m positive entries.

Proof. Apply Theorem 1.5 to b ∈ cone(A1, . . . , An) and read the nonzero xi as the positive compo-
nents of x.

1.3 View 2: intersection of an affine space with halfspaces

Definition 1.7 (Hyperplane, halfspace, orthant). A hyperplane is an affine set {x ∈ Rn |
Ax = b}. A halfspace is a set of the form {x ∈ Rn | a⊤x ≤ β}. The nonnegative orthant is
Rn
+ = {x | x ≥ 0}; it is the intersection of the coordinate halfspaces {x | e⊤i x ≥ 0}.

Dimension. The hyperplane {x ∈ Rn | Ax = b} is an affine subspace of dimension n− Rank(A)
(equivalently, codimension Rank(A)). In the common case of a single linear equation aTx = β, the
hyperplane has dimension n− 1.

Proposition 1.8 (Feasible set as an intersection). The feasible set

F = {x ∈ Rn | Ax = b, x ≥ 0}

is the intersection of the hyperplane(s) Ax = b with the nonnegative orthant.

Proof. Direct from the definition.
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Definition 1.9 (Polyhedron). A polyhedron is an intersection of finitely many halfspaces and
hyperplanes (e.g., x | Ax ≤ b, Cx = d).

In standard form, F is a (possibly unbounded) polyhedron.

2 Convexity facts and consequences

Definition 2.1 (Convex combination; convex set; convex hull). For x, y ∈ Rn and θ ∈ [0, 1],
the point θx + (1 − θ)y is a convex combination. A set C ⊆ Rn is convex if it contains every
convex combination of its points. The convex hull of S ⊆ Rn is

conv(S) =
{ k∑

i=1

θixi

∣∣∣ xi ∈ S, θi ≥ 0,

k∑
i=1

θi = 1
}
.

Proposition 2.2 (Basic convexity facts). Hyperplanes and halfspaces are convex, and inter-
sections of convex sets are convex.

Proposition 2.3 (Basic convexity facts). Hyperplanes and halfspaces are convex, and inter-
sections of convex sets are convex.

Consequently, the feasible set F = {x | Ax = b, x ≥ 0} is convex.

Proof. Hyperplanes are convex. Let H = {x ∈ Rn | aTx = b} for some a ∈ Rn, b ∈ R. If x, y ∈ H
and θ ∈ [0, 1], then

aT
(
θx+ (1− θ)y

)
= θ aTx+ (1− θ) aT y = θb+ (1− θ)b = b,

so θx+ (1− θ)y ∈ H.
Halfspaces are convex. Let S = {x ∈ Rn | aTx ≤ b} for some a ∈ Rn, b ∈ R. If x, y ∈ S and

θ ∈ [0, 1], then

aT
(
θx+ (1− θ)y

)
= θ aTx+ (1− θ) aT y ≤ θb+ (1− θ)b = b,

so θx+ (1− θ)y ∈ S.
Intersections of convex sets are convex. Let {Ci}i∈I be a family of convex sets and C :=

⋂
i∈I Ci.

If x, y ∈ C, then x, y ∈ Ci for every i ∈ I. Since each Ci is convex, θx+ (1− θ)y ∈ Ci for all i ∈ I
and all θ ∈ [0, 1]. Hence θx+ (1− θ)y ∈

⋂
i∈I Ci = C.

Exercise. Show that the conic hull of a set of vectors cone(A1, . . . , An) is convex.

Definition 2.4 (Polytope). A polytope is the convex hull of finitely many points.

Any bounded polyhedron is a polytope.
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2.1 Worked examples

Example 2.5 (Checking feasibility via the column cone). Let

A =

[
1 0 1

0 1 1

]
, b =

[
2
1

]
.

Since b = 1 · a1 + 1 · a3 with a1 = (1, 0), a3 = (1, 1), we have b ∈ cone(a1, a2, a3); the certificate
is x = (1, 0, 1) ≥ 0 with Ax = b. If instead b = (−1, 1), then b /∈ cone(a1, a2, a3), so the LP is
infeasible by Proposition 1.4.

Example 2.6 (Intersection view in R3). For A = 1⊤ and b = 1, the feasible set is {x ≥
0 | x1 + x2 + x3 = 1}, the standard 2-simplex. This is a convex shape (in fact, a triangle),
illustrating Proposition 1.8 and Proposition 2.3.

Summary Feasibility for standard-form LPs admits two complementary geometric characteri-
zations: (i) the right-hand side b must lie in the cone spanned by the columns of A; and (ii) the
feasible x live at the intersection of an affine space with the positive orthant. These yield immediate
convexity of the feasible region and, via Carathéodory, sparse feasible representations.

3 LP geometry: inequality form

Definition 3.1 (Inequality form of an LP). An inequality-form linear program is

minimize cTx
subject to Ax ≤ b
variable x ∈ Rn,

where A ∈ Rm×n and b ∈ Rm.

The inequality form is particularly common in the context of convex optimization, as it gen-
eralizes well to other convex cones. Geometrically, each constraint aTi x ≤ bi describes a halfspace,
and the feasible set is the intersection of finitely many halfspaces, i.e., a polyhedron.

Proposition 3.2 (Equivalence of forms). The standard-form LP and inequality-form LP have
the same expressive power. In particular:

(i) Any inequality Ax ≤ b can be written as an equality with a slack variable:

Ax ≤ b ⇐⇒ Ax+ s = b, s ≥ 0.

(ii) Any free variable xj ∈ R can be expressed as the difference of two nonnegative variables:

xj = x+j − x−j , x+j , x
−
j ≥ 0.

Hence feasible regions of either form are polyhedra.
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Proof. (i) If Ax ≤ b, define s := b− Ax ≥ 0, so Ax+ s = b. Conversely, if Ax+ s = b with s ≥ 0,
then Ax ≤ b.

(ii) For any xj ∈ R, set x+j = max(xj , 0), x
−
j = max(−xj , 0), so xj = x+j − x−j and x+j , x

−
j ≥ 0.

Example 3.3 (Production planning). Suppose a factory produces n products. Let xi denote
the quantity of product i.

• Each unit of product i requires aji units of resource j.

• Resource j has availability bj .

• The production cost per unit is ci.

The problem is
minimize cTx
subject to Ax ≤ b

0 ≤ x ≤ d,
variable x ∈ Rn,

where d ∈ Rn encodes demand limits.
As an extension, we can include a fixed charge fi if product i is produced at all. To model this,
introduce binary zi ∈ {0, 1} with xi ≤ Mzi, giving the mixed-integer linear program

minimize cTx+ fT z
subject to Ax ≤ b

0 ≤ x ≤ d,
xi ≤ Mzi,

variables x ∈ Rn, z ∈ {0, 1}n

x1

x2

feasible region

aT1 x ≤ b1

aT2 x ≤ b2

aT3 x ≤ b3

Figure 1: Intersection of halfspaces in R2 yields a polyhedron.
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4 Solutions of a linear program

We will now introduce three ways to characterize the solutions of a linear program, which will help
us understand the properties of potential solution, and algorithms to find a solution.

4.1 Active constraints and slacks

Definition 4.1 (Active constraints). Consider the inequality-form feasible region

F = {x ∈ Rn | Ax ≤ b}.

• Constraint i is active at x if aTi x = bi.

• The active set at x is
A(x) := { i | aTi x = bi }.

• For nonnegativity constraints x ≥ 0, the bound on coordinate j is active at x if xj = 0.

Introducing slack variables gives a dual view of this geometry:

Ax ≤ b ⇐⇒ Ax+ s = b, s ≥ 0.

Then constraint i is active at x precisely when the corresponding slack variable is zero:

aTi x = bi ⇐⇒ si = 0.

Example 4.2 (Active vs inactive constraints in R2). Consider the feasible set

F = {(x1, x2) | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 3}.

• At x = (0, 3), two constraints are active: x1 ≥ 0 and x1 + x2 ≤ 3.

• At x = (1, 2), only one constraint is active: x1 + x2 ≤ 3.

4.2 Extreme points of a convex set

Definition 4.3 (Extreme point). Let C ⊆ Rn be convex. A point x ∈ C is an extreme point
of C if it cannot be written as a nontrivial convex combination of other points in C. That is,

x = θy + (1− θ)z, y, z ∈ C, θ ∈ (0, 1) =⇒ y = z = x.

Theorem 4.4 (Uniqueness =⇒ extremality). If x⋆ is the unique minimizer of the linear
program

min
x∈S

cTx,
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x1

x2

x1 + x2 = 3x1 ≥ 0

x2 ≥ 0

(0, 3): 2 active

(1, 2): 1 active

Figure 2: Active vs inactive constraints. At (0, 3) two facets meet (both active); at (1, 2) only one
constraint is active.

then x⋆ is an extreme point of S.

Proof sketch. Suppose x⋆ were not extreme. Then there exist y, z ∈ S, y ̸= z, and θ ∈ (0, 1) such
that x⋆ = θy + (1− θ)z. By linearity of the objective,

cTx⋆ = cT
(
θy + (1− θ)z

)
= θcT y + (1− θ)cT z.

Since x⋆ is optimal, we must have cT y = cT z = cTx⋆. Thus y and z are distinct minimizers,
contradicting uniqueness. Therefore x⋆ must be extreme.

x1

x2

extreme non-extreme

Figure 3: Extreme vs. non-extreme points. Corners of a polytope are extreme; interior edge points
are not.

4.3 Vertices and supporting hyperplanes

Definition 4.5 (Vertex). Let S ⊆ Rn. A point x ∈ S is a vertex of S if there exists c ∈ Rn

such that
cTx < cT y for all y ∈ S \ {x}.
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Equivalently, the hyperplane
H = {z ∈ Rn | cT z = cTx}

supports S only at the single point x.

Proposition 4.6. Every vertex of a convex set is also an extreme point.

Proof idea. Suppose x ∈ S is a vertex. Then x is the unique solution to the optimization problem

min
y∈S

cT y.

By the previous theorem (uniqueness =⇒ extremality), x must be an extreme point.

4.4 Basic feasible solutions (BFS)

Definition 4.7 (Basic feasible solution). Consider the standard-form feasible region

F = {x ∈ Rn | Ax = b, x ≥ 0},

where A ∈ Rm×n has full row rank m. A point x ∈ F is a basic feasible solution (BFS) if there
exists an index set S ⊂ {1, . . . , n} with |S| = m such that

AS ∈ Rm×m is invertible, and xS = A−1
S b, xS̄ = 0, x ≥ 0.

Here AS denotes the submatrix of A with columns indexed by S, and xS̄ are the coordinates
of x not in S.

Definition 4.8 (Neighboring BFS). Two BFS with bases S, S′ are called neighbors if they
share m− 1 basic columns:

|S ∩ S′| = m− 1.

Remark 4.9 (Computation of BFS). To enumerate candidate BFS:

1. Pick a set S of m linearly independent columns of A.

2. Solve xS = A−1
S b.

3. Set xS̄ = 0.

4. If x ≥ 0, then x is a BFS.

This procedure generates finitely many BFS, which we will soon show are the only candidates for
optimal solutions.
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5 Equivalence of extreme points, vertices, and BFS

Theorem 5.1. For the feasible set

F = {x ∈ Rn | Ax = b, x ≥ 0},

the following statements are equivalent:

(i) x is an extreme point of F .

(ii) x is a vertex of F .

(iii) x is a basic feasible solution (BFS) of F .

Hence every polyhedron has finitely many extreme points, and the geometric “corners” are
precisely the BFS of any standard-form representation.

Proof sketches. (Vertex =⇒ Extreme). If x is a vertex, then there exists c ∈ Rn such that x is
the unique minimizer of miny∈F cT y. By the uniqueness =⇒ extremality theorem, this implies x
is an extreme point.

(Extreme =⇒ BFS). Suppose x⋆ is an extreme point but not basic. Let S = {i | x⋆i > 0}. If
AS were rank-deficient, there exists d ̸= 0 with support in S such that Ad = 0. Then for sufficiently
small ε > 0, both

x+ = x⋆ + εd, x− = x⋆ − εd

are feasible: they satisfy Ax± = Ax⋆ = b, and nonnegativity is preserved by choosing ε small
enough (via the min-ratio rule). Moreover, x⋆ = 1

2(x
+ + x−) with x+ ̸= x−. Thus x⋆ is not

extreme, contradicting the assumption. Therefore AS must be nonsingular with |S| = m, so x⋆ is
basic.

(BFS =⇒ Vertex). Let x⋆ be a BFS with basis S. Define c ∈ Rn by

ci = 0 (i ∈ S), ci = 1 (i /∈ S).

Then cTx⋆ = 0. For any other feasible x ∈ F , at least one coordinate outside S is positive, so
cTx > 0. Therefore x⋆ is the unique minimizer of miny∈F cT y, hence a vertex.

Consequences for optimization

• Corner optimality. If an LP has a solution and its feasible set has extreme points, then
some extreme point is optimal. This explains why LP solvers can focus on corners of the
feasible set.

• Algorithmic viewpoint. Enumerating all bases is conceptually simple but requires
(
n
m

)
pos-

sibilities. The simplex method instead performs a local search, moving between neighboring
BFS, improving the objective until no improving neighbor exists.
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x1

x2

x⋆+d
−d

feasible polytope

Figure 4: Nullspace perturbation argument for “Extreme =⇒ BFS”.

Exercise. Consider the unit ℓ∞ ball

B∞ = {x ∈ Rn | ∥x∥∞ ≤ 1}.

(a) Identify the extreme points of B∞. How many extreme points does it have?

(b) Write B∞ in inequality form as a polyhedron. How many inequalities are needed?

(c) Formulate the problem of minimizing cTx over B∞ as a linear program in standard form.
(Hint: you may introduce new variables. One approach uses the extreme points of B∞
as columns of the constraint matrix A.)

(d) Formulate the same problem in inequality form.

(e) Which formulation would you expect to be easier to solve in practice, and why?

Now do the same for the unit ℓ1 ball

B1 = {x ∈ Rn | ∥x∥1 ≤ 1}.

Is your answer to part (e) the same or different for B1?
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