
CME 307: Optimization CME 307 / MS&E 311 / OIT 676

Lecture 3: Solving and modeling LPs

Fall 2025 Prof. Udell

1 Solving linear programs

We now turn to algorithms for solving linear programs. The main idea, motivated by the geometry
we have developed, is that if an LP has a solution, then some corner point (BFS / vertex /
extreme point) is optimal. Thus algorithms can search among vertices rather than the entire
feasible polyhedron.

1.1 Algorithms for LPs

• Enumerate vertices: generate all BFS and evaluate the objective.

• Fourier–Motzkin elimination: eliminate variables to project down to a feasible interval.

• Simplex method : walk along edges from BFS to BFS, improving the objective.

• Ellipsoid method : first polynomial-time algorithm, theoretical but not practical.

• Interior point methods: polynomial-time and practically efficient.

• First-order methods: scalable to very large problems, using gradient information only.

Remark 1.1. Enumeration and elimination are conceptually simple but not practical. The simplex
algorithm remains a workhorse in practice. Interior point methods (IPMs) provide an alternative
with strong complexity guarantees. First-order methods are attractive for large-scale machine
learning problems.

1.2 Fourier–Motzkin elimination*

Fourier–Motzkin elimination is a procedure for projecting a polyhedron onto a subspace by elimi-
nating variables. It is a conceptually simple algorithm, and one of the earliest algorithms for linear
programming, but it is not practical for large problems. The algorithm is named after Joseph
Fourier, who proposed the method in 1826, and Theodore Motzkin who re-discovered it in 1936.
As a side benefit, it shows that the projection of a polyhedron is again a (closed) polyhedron.

We illustrate the method with an example.

Example 1.2 (Fourier–Motzkin elimination). Consider the system

x1 + 2x2 ≤ 4,
−x1 + x2 ≤ 1,

x1, x2 ≥ 0.

1

We eliminate x1. Collect inequalities bounding x1:

{0, x2 − 1} ≤ x1 ≤ 4− 2x2.

Hence feasible x2 must satisfy

0 ≤ 4− 2x2, x2 − 1 ≤ 4− 2x2, x2 ≥ 0.

Simplifying, x2 ∈ [0, 5/3]. Thus the projection of the feasible region onto x2 is the interval
[0, 5/3]. This method shows that the projection of a polyhedron is again a (closed) polyhedron.

1.3 Enumerating vertices

One of the main benefits of the basic feasible solution (BFS) concept is that it allows us to enumerate
all vertices of a polyhedron.

Proposition 1.3. Let A ∈ Rm×n with full row rank m. Then every BFS corresponds to some
choice of m columns AS with |S| = m and AS invertible. The BFS is

xS = A−1
S b, xS̄ = 0.

If xS ≥ 0, this point is feasible.

Proof. Direct from the definition of a BFS: pick m basic variables, solve the equality, and set the
rest to zero. Feasibility requires nonnegativity. Thus every BFS arises in this way.

Remark 1.4. Enumerating all BFS requires considering
(
n
m

)
bases, which is exponential in m. Hence

naive enumeration is not a practical algorithm.

1.4 Simplex algorithm

The simplex algorithm is a local search method on the set of BFS. It starts at some BFS and
repeatedly moves to a neighboring BFS with strictly better objective value, until no improving
neighbor exists. Historically, the simplex algorithm was the first practical method for solving LPs,
developed by George Dantzig in the 1940s.

Definition 1.5 (Simplex algorithm). The simplex algorithm is a local search on BFS:

1. Start at some BFS x.

2. Move to a neighboring BFS x′ with strictly better objective cTx′.

3. Repeat until no improving neighbor exists.

The simplex algorithm raises several key questions:

• How to find an initial BFS?

2

• How to choose a neighboring BFS that improves the objective?

• How to prove optimality when no improving neighbor exists?

1.5 Finding an initial BFS

One approach is to solve an auxiliary problem for which a BFS is obvious:

minimize
∑m

i=1 zi
subject to Ax+Dz = b,

x, z ≥ 0,

where D ∈ Rm×m is diagonal with Dii = sign(bi). The BFS x = 0, z = |b| is always feasible. If the
optimal solution has z = 0, then x is a BFS for the original problem.

Exercise. Show that the auxiliary problem has the following properties:

1. If the original problem is feasible, then the auxiliary problem has optimal value zero.

2. If the original problem is infeasible, then the auxiliary problem has optimal value greater
than zero.

3. If the original problem is unbounded, then the auxiliary problem is also unbounded.

1.6 Optimization via reduced costs

Let us now address the other two questions: how to choose an improving neighboring BFS, and
how to prove optimality when no improving neighbor exists. We will use the concept of reduced
cost to answer both questions: the reduced cost tells us how the objective changes when we move
from one BFS to a neighboring BFS.

Suppose x is a nondegenerate BFS with active set S. Consider entering variable j /∈ S. We will
increase xj from zero, and adjust the basic variables xS to maintain feasibility. Define the basic
direction dj :

djj = 1, djS = −A−1
S Aj , dji = 0 for i /∈ S ∪ {j}.

Then Adj = 0, so feasibility is preserved. For sufficiently small θ > 0, x+ θdj ≥ 0. The change in
the objective is

cT (x+ θdj)− cTx = θ c̄j ,

where
c̄j := cj − cTSA

−1
S Aj

is the reduced cost of variable j.

An improving neighbor. To find a neighboring BFS with better objective, we can compute the
reduced costs c̄j for all j /∈ S. If any c̄j < 0, then moving in direction dj improves the objective.
We can increase θ until some basic variable xi hits zero, which gives a new BFS with active set
S ∪ {j}\{i}. This is called a pivot operation.

3

Remark 1.6. The choice of entering variable j and leaving variable i can affect the number of
iterations required for convergence. There are many pivot rules; a common choice is to pick the
entering variable with most negative reduced cost.

An optimality criterion. The reduced cost also gives a simple optimality test:

Proposition 1.7 (Reduced cost optimality test). If all reduced costs c̄j ≥ 0 for j /∈ S, then
the BFS x is optimal.

Proof. Any feasible direction d at x is a conic combination of {dj : j /∈ S}. (See Proposition 1.8.)
Thus for any feasible x′ = x+

∑
j /∈S αjd

j with α ≥ 0,

cTx′ = cTx+
∑
j /∈S

αj c̄j ≥ cTx,

so no feasible point has smaller objective value. Hence x is optimal.

Proposition 1.8. The feasible set of the LP lies in the cone generated by the basic directions
x+ cone({dj : j /∈ S}) for any BFS x.

Proof. The basic directions dj for j /∈ S form a basis for the nullspace of A. To see this, note that
Adj = 0 by construction. Moreover, the n−m vectors dj are linearly independent: if

∑
j /∈S αjd

j = 0,

then looking at the components in S̄ shows αj = 0 for all j /∈ S. Since dim(null(A)) = n−m, the
dj form a basis.

Now consider any feasible point x′ with Ax′ = b and x′ ≥ 0. Then d = x′ − x satisfies Ad = 0,
so d lies in the nullspace of A. Thus d =

∑
j /∈S αjd

j for some αj ∈ R. Since x′ = x + d ≥ 0 and

xj = 0 for all j /∈ S, we must have αj ≥ 0 for all j /∈ S. Thus x′ ∈ x+ cone({dj : j /∈ S}).

Gotcha 1.9. The reduced cost optimality test requires a nondegenerate BFS. We say that a
BFS x is degenerate if some basic variables are zero. If x is degenerate, some basic directions
dj may not be feasible directions, and the argument above fails. Hence the optimality test
Proposition 1.7 provides a sufficient but not necessary condition for optimality.

1.7 Worked example

Example 1.10 (Two-variable LP). Consider

minimize −x1 − 2x2
subject to x1 + x2 ≤ 4,

x1 + 3x2 ≤ 6,
x1, x2 ≥ 0.

The feasible region is a polygon in R2 with BFS at (0, 0), (0, 2), (3, 1), (4, 0). Evaluating the
objective shows the minimum occurs at (3, 1). Reduced costs confirm optimality: no improving
direction exists at this BFS.

4

1.8 Exercises

Exercise. Consider the LP
minimize x1 − x2
subject to x1 + 2x2 ≤ 4,

2x1 + x2 ≤ 5,
x1, x2 ≥ 0.

(a) List all BFS by choosing pairs of active constraints.

(b) For each BFS, compute the objective value.

(c) Identify the optimal BFS.

(d) Verify optimality using reduced costs.

2 Modeling linear programs

We now turn to modeling : the art of expressing practical decision problems as linear programs.
Many common constraints and objectives can be represented in LP form, often using additional
variables and transformations.

2.1 Inequality constraints

Definition 2.1 (Slack variables). An inequality constraint Ax ≤ b can be written in standard
form using a slack variable s ≥ 0:

Ax ≤ b ⇐⇒ Ax+ s = b, s ≥ 0.

Example 2.2 (Standard form with slack variables). Consider

minimize x1 + 2x2
subject to x1 + x2 ≤ 3,

x1, x2 ≥ 0.

Introducing a slack s ≥ 0 yields

x1 + x2 + s = 3, x1, x2, s ≥ 0.

Exercise. Rewrite the problem

minimize −2x1 + x2
subject to 2x1 + 3x2 ≤ 5,

x1, x2 ≥ 0

in standard form using slack variables.

5

2.2 Free variables

Definition 2.3 (Variable splitting). A free variable xj ∈ R can be expressed as the difference
of two nonnegative variables:

xj = x+j − x−j , x+j , x
−
j ≥ 0.

Example 2.4 (Standard form with free variable). Suppose we want to solve

minimize − x subject to 2x = 1, x ∈ R.

Introduce x+, x− ≥ 0 with x = x+ − x−. Then

minimize − x+ + x− subject to 2x+ − 2x− = 1, x+, x− ≥ 0.

2.3 Absolute values

Definition 2.5 (Epigraph trick). An absolute value constraint |x| ≤ 10 can be modeled using
inequalities:

−10 ≤ x ≤ 10.

More generally, to handle ∥x∥1 =
∑n

i=1 |xi| in the objective, introduce variables ti ≥ 0 and
enforce

−ti ≤ xi ≤ ti.

Then ∥x∥1 = 1T t.

Example 2.6 (ℓ1 minimization). The problem

min ∥x∥1 subject to Ax = b

can be written in standard form as

minimize 1T t
subject to Ax = b,

−t ≤ x ≤ t,
t ≥ 0.

Exercise. Show that the reformulation above is equivalent to the original ℓ1 minimization
problem.

6

2.4 Piecewise linear objectives

Definition 2.7 (Epigraph of maximum). The problem minmax(x1, . . . , xn) can be modeled
by introducing an auxiliary variable t such that

xi ≤ t for all i.

Then the problem is equivalent to

minimize t subject to xi ≤ t ∀i.

Example 2.8 (Minimum of maximum). Consider minmax(x1, x2) subject to x1 + x2 = 1,
x ≥ 0. Introduce t with x1 ≤ t, x2 ≤ t. The LP becomes

minimize t
subject to x1 + x2 = 1,

x1 ≤ t, x2 ≤ t,
x1, x2, t ≥ 0.

2.5 Assignment constraints

Definition 2.9 (Assignment). In an assignment problem, each task must be assigned to exactly
one agent. Let Xij ∈ {0, 1} be a binary variable indicating assignment of task i to agent j.
Constraints: ∑

j

Xij = 1 ∀i,
∑
i

Xij ≤ 1 ∀j.

Example 2.10 (Classroom assignment). Suppose each class must be assigned to one room.
The cost of assigning class i to room j is Cij .

minimize
∑

i,j CijXij

subject to
∑

j Xij = 1, ∀i,∑
iXij ≤ 1, ∀j,

Xij ∈ {0, 1}.

This is a mixed-integer linear program (MILP).

2.6 Logical constraints

Definition 2.11 (Big-M method). A logical implication can often be modeled by introducing
a large constant M . For example, to enforce “Ax ≤ b if y = 1” where y ∈ {0, 1}, we can write

Ax ≤ b+ (1− y)M.

7

Example 2.12 (Capacity constraint with logic). Suppose class i is assigned to room j with
binary variableXij . Let pi be enrollment of class i and cj the capacity of room j. The constraint

pi ≤ cj if Xij = 1

can be modeled as
pi ≤ cj + (1−Xij)M.

2.7 Flow constraints

Definition 2.13 (Flow conservation). In a flow network with nodes V and edges E, variables
fij denote flow on edge (i, j). Conservation at node k requires∑

j:(k,j)∈E

fkj −
∑

i:(i,k)∈E

fik = sk,

where sk is supply (positive), demand (negative), or zero.

Example 2.14 (Minimum cost flow). Find the cheapest way to ship one unit from source s
to sink t:

minimize
∑

(i,j)∈E cijfij
subject to

∑
j fsj −

∑
i fis = 1,∑

j ftj −
∑

i fit = −1,∑
j fkj −

∑
i fik = 0 ∀k /∈ {s, t},

fij ≥ 0.

2.8 Exercises

Exercise. Model the following constraints in standard form LP:

(a) |x1 − x2| ≤ 5.

(b) max(x1, x2, x3) ≤ 2.

(c) A task must be assigned to exactly one of three machines, each of which can handle at
most one task.

8

	Solving linear programs
	Algorithms for LPs
	Fourier–Motzkin elimination*
	Enumerating vertices
	Simplex algorithm
	Finding an initial BFS
	Optimization via reduced costs
	Worked example
	Exercises

	Modeling linear programs
	Inequality constraints
	Free variables
	Absolute values
	Piecewise linear objectives
	Assignment constraints
	Logical constraints
	Flow constraints
	Exercises

