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1 Optimality conditions

What does it mean to solve an optimization problem? We will study unconstrained and then
(briefly) constrained smooth optimization, focusing on precise definitions and the conditions that
characterize optimal solutions.

Definition 1.1 (Global, local, isolated local, unique minimizers). Let f : D ⊆ Rn → R. A
point x⋆ ∈ D is a

• global minimizer if f(x) ≥ f(x⋆) for all x ∈ D,

• local minimizer if there is a neighborhood N of x⋆ such that f(x) ≥ f(x⋆) for all x ∈ N ,

• isolated local minimizer if the neighborhood N contains no other local minimizers,

• unique minimizer if it is the only global minimizer.

Example 1.2. A few examples to illustrate the definitions:

• For f(x) = x4 on R, x⋆ = 0 is a global minimizer (hence also local) that is isolated.

• For f(x) = 1 − cos(x) on R, x = 0 is an isolated local minimizer, but not a global
minimizer.

• For f(x) = 0, x = 0 is a global minimizer, but not isolated.

Here we will formalize and prove the two central results that underlie most algorithms: the first-
and second-order optimality conditions. We first study optimality for a differentiable, unconstrained
objective, and then consider more general constrained problems.

1.1 First-order necessary condition

Definition 1.3 (Stationary point). A point x⋆ is stationary if ∇f(x⋆) = 0.

Theorem 1.4 (First-order necessary condition). If f : Rn → R is differentiable and x⋆ is a
local minimizer, then ∇f(x⋆) = 0.
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Proof. Let d ∈ Rn be arbitrary, and define ϕ(α) = f(x⋆ +αd). Since x⋆ is a local minimizer, α = 0
is a minimizer of ϕ on some interval around 0, so ϕ′(0) = 0. But ϕ′(0) = ∇f(x⋆)Td by the chain
rule. Because this holds for all d, we must have ∇f(x⋆) = 0.

Remark 1.5 (Geometric picture). At a local minimizer of a differentiable function f : Rn → R, all
directional derivatives are 0 to first order; the tangent hyperplane given by the first-order Taylor
expansion touches but does not cross below the graph of f near x⋆.

Gotcha 1.6 (Stationary ̸= minimizer). Stationarity is necessary but not sufficient for optimality.
Saddle points and local maxima also satisfy ∇f = 0. For example, f(x) = x3 has ∇f(0) = 0
but x = 0 is not a local minimizer. A second-order test is needed.

1.2 Symmetric positive semidefinite (PSD) matrices

We will need the following definition to generalize the first-order condition.

Definition 1.7 (PSD/SPD). A symmetric matrix Q ∈ Rn×n is positive semidefinite (PSD),
written Q ⪰ 0, if xTQx ≥ 0 for all x ∈ Rn; it is positive definite (PD), written Q ≻ 0, if
xTQx > 0 for all x ̸= 0. Equivalently: Q = QT and λmin(Q) ≥ 0 (PSD) or > 0 (PD).

PSD matrices arise throughout least squares, quadratic models, and curvature tests; e.g., if
f(x) = 1

2x
TQx+ cTx, then ∇2f(x) ≡ Q and f is convex ⇐⇒ Q ⪰ 0.

Example 1.8 (Quadratic bowls). If Q = UΛUT with Λ = conv(λi), then xTQx =∑
i λi (u

T
i x)

2 ≥ 0 iff λi ≥ 0 for all i. Level sets xTQx = const are ellipsoids when Q ≻ 0.

Remark 1.9 (Why PSD matters here). The SONC/SOSC are nothing but statements about the
quadratic form dTHd at a stationary point. Testing optimality reduces to testing PSD or PD of
the Hessian.

Gotcha 1.10. The Hessian is always symmetric. However, elsewhere in optimization and linear
algebra, it is important to emphasize the distinction between symmetric and possibly non-
symmetric positive definite matrices. Confusingly, some authors use SPD to mean “symmetric
positive definite”. So SPD means ≻ 0, while PSD means ⪰ 0, and both are symmetric.

1.3 Second-order necessary and sufficient conditions

Definition 1.11 (Hessian and quadratic form). If f is twice differentiable, its Hessian at x is
H(x) := ∇2f(x).

For small d, Taylor’s theorem gives

f(x+ d) = f(x) +∇f(x)Td+ 1
2d

TH(x)d+ o(∥d∥2).
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Theorem 1.12 (Second-order necessary condition (SONC)). If f is twice differentiable and
x⋆ is a local minimizer, then

∇f(x⋆) = 0 and ∇2f(x⋆) ⪰ 0.

Proof. We already have ∇f(x⋆) = 0 by Theorem 1.4. By Taylor’s theorem, for small d,

f(x⋆ + d) = f(x⋆) + 1
2 d

T∇2f(x⋆) d+ o(∥d∥2).

If ∇2f(x⋆) had a direction d with dT∇2f(x⋆)d < 0, then f(x⋆ + αd) < f(x⋆) for sufficiently small
α > 0, contradicting local minimality. Thus ∇2f(x⋆) ⪰ 0.

Theorem 1.13 (Second-order sufficient condition (SOSC)). If ∇f(x⋆) = 0 and ∇2f(x⋆) ≻ 0,
then x⋆ is a strict local minimizer.

Proof. Positive definiteness implies there exists c > 0 and δ > 0 with dT∇2f(x⋆)d ≥ c∥d∥2 for
∥d∥ < δ. The same Taylor expansion gives, for ∥d∥ small, f(x⋆ + d) ≥ f(x⋆) + c

2∥d∥
2 + o(∥d∥2) >

f(x⋆) for d ̸= 0.

Example 1.14 (Flat extrema). In 1D, f(x) = x4 has f ′(0) = 0, f ′′(0) = 0 but x = 0 is a (strict)
local minimum. The SONC holds (f ′′(0) ≥ 0) but SOSC does not (not > 0). Higher-order
terms decide.

1.4 Worked examples

Example 1.15 (A saddle point). f(x1, x2) = x21 − x22 has ∇f(0, 0) = 0 but H =

[
2 0
0 −2

]
is

indefinite, so (0, 0) is a saddle; not a local minimizer.

Exercise. For f(x) = 1
2∥Ax − b∥22 with A ∈ Rm×n: (i) Find the stationary condition; (ii)

characterize when the solution is unique; (iii) relate your answer to ATA ⪰ 0.

1.5 Consequences for algorithms

• Termination certificates. If an algorithm returns x with ∥∇f(x)∥ small and H(x) ⪰ −ϵI,
then x is an approximate second-order stationary point.

• Newton/Quasi-Newton. Newton steps rely on local quadratic models; convergence hinges
on the value of the smallest eigenvalue of H(x) near the solution (or regularization when H is
indefinite).

• Convexity. We will see that for a convex function, any stationary point is automatically a
global minimizer; in that setting, it suffices to check the FONC to determine global optimality!
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Summary

• FONC (necessary): local min ⇒ ∇f = 0.

• SONC (necessary): local min ⇒ ∇2f ⪰ 0.

• SOSC (sufficient): ∇f = 0 and ∇2f ≻ 0 ⇒ strict local min.

2 Convex Analysis

Convex analysis supplies the language and tools that make convex optimization so powerful: clean
global optimality guarantees, robust modeling rules (epigraphs, sublevel sets, pointwise maxima,
compositions), and the first-order theory for nondifferentiable functions via supporting hyperplanes
and subgradients.

Convex sets

Definition 2.1 (Convex set). A set S ⊆ Rn is convex if it contains every chord: for all w, v ∈ S
and θ ∈ [0, 1],

θw + (1− θ)v ∈ S.

Equivalently, any convex combination of points in S remains in S.

Geometrically, the line segment between any two points of S lies inside S.

Proposition 2.2 (Basic closure rules for sets). If S, T are convex, then so are:

(a) S ∩ T (intersection),

(b) S + T := {s+ t | s ∈ S, t ∈ T} (Minkowski sum),

(c) {x | ∃ y with (x, y) ∈ S} (projection of a convex set).

Proof sketches. (a) Intersections inherit the chord property. (b) For θ ∈ [0, 1] and si ∈ S, ti ∈ T ,
θ(s1 + t1) + (1 − θ)(s2 + t2) = [θs1 + (1 − θ)s2] + [θt1 + (1 − θ)t2] ∈ S + T . (c) If x1, x2 are in
the projected set, then there exist (xi, yi) ∈ S for i = 1, 2. The line segment between (x1, y1) and
(x2, y2) is contained in S, and its projection onto the x-space is the line segment between x1 and
x2.

Consequence for modeling. Eliminating variables (projections), combining uncertainty sets
(Minkowski sums), and intersecting constraint sets preserve convexity of the feasible set. These
operations are building blocks for constructing convex feasible sets.
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Convex functions: four equivalent views

Definition 2.3 (Convex function). A function f : Rn → R is convex if, for all w, v ∈ Rn and
θ ∈ [0, 1],

f(θw + (1− θ)v) ≤ θf(w) + (1− θ)f(v).

This is the chord test.

Proposition 2.4 (Equivalent characterizations). For f : Rn → R, the following are equivalent:

(a) (Chord test) f(θw + (1− θ)v) ≤ θf(w) + (1− θ)f(v) for all w, v, θ ∈ [0, 1].

(b) (Epigraph) epi(f) := {(x, t) | t ≥ f(x)} is a convex subset of Rn+1.

(c) (First-order condition, C1) (if f is differentiable) f(v) ≥ f(w) + ∇f(w)⊤(v − w) for all
w, v ∈ Rn.

(d) (Second-order condition, C2) (if f is twice differentiable) λmin(∇2f(x)) ≥ 0 for every
x ∈ Rn.

Proof of the proposition. We show (a) ⇔ (b) for any f , (a) ⇔ (c) when f ∈ C1, and (a) ⇔ (d)
when f ∈ C2.

(a) ⇒ (b). Let (x1, t1), (x2, t2) ∈ epi(f), i.e., ti ≥ f(xi). For θ ∈ [0, 1], set xθ = θx1 + (1 − θ)x2
and tθ = θt1 + (1− θ)t2. By convexity (the chord test),

f(xθ) ≤ θf(x1) + (1− θ)f(x2) ≤ θt1 + (1− θ)t2 = tθ,

so (xθ, tθ) ∈ epi(f). Thus epi(f) is convex.

(b) ⇒ (a). Fix w, v and θ ∈ [0, 1]. Since (w, f(w)) and (v, f(v)) belong to epi(f) and epi(f) is
convex, the convex combination(

θw + (1− θ)v, θf(w) + (1− θ)f(v)
)

also lies in epi(f). By the definition of epigraph,

f(θw + (1− θ)v) ≤ θf(w) + (1− θ)f(v),

which is the chord test.

Assume f ∈ C1: (a) ⇒ (c). Fix w, v and define ϕ(α) := f
(
w + α(v − w)

)
for α ∈ [0, 1]. We will

show that the chord condition (a) implies the supporting line at α = 0 underestimates ϕ:

ϕ(1) ≥ ϕ(0) + ϕ′(0) · (1− 0) ⇒ f(v) ≥ f(w) +∇f(w)⊤(v − w),

since ϕ′(0) = ∇f(w)⊤(v − w). To show this, let’s argue by contradiction. If the inequality fails,
then there exists ϵ > 0 such that

ϕ(ϵ) < ϕ(0) + ϕ′(0) · ϵ.
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Draw a line segment between (0, ϕ(0)) and (ϵ, ϕ(ϵ)); its slope is less than ϕ′(0), so it crosses the
tangent line at some α ∈ (0, ϵ). This implies that the chord between α and 0 lies below ϕ at some
point, contradicting (a). Thus the supporting line inequality holds.

Assume f ∈ C1: (c) ⇒ (a). Let xθ = θw + (1 − θ)v. Apply (c) at the point xθ with the test
points w and v:

f(w) ≥ f(xθ) +∇f(xθ)
⊤(w − xθ),

f(v) ≥ f(xθ) +∇f(xθ)
⊤(v − xθ).

Multiply the first inequality by θ and the second by (1− θ) and add:

θf(w) + (1− θ)f(v) ≥ f(xθ) +∇f(xθ)
⊤(θ(w − xθ) + (1− θ)(v − xθ)

)
= f(xθ),

because θw + (1− θ)v = xθ. Rearranging yields the chord test.

Assume f ∈ C2: (a) ⇒ (d). Fix x and direction d. The univariate restriction ϕ(α) := f(x+αd)
is convex by (a), hence ϕ′′(0) ≥ 0. But ϕ′′(0) = d⊤∇2f(x) d, so d⊤∇2f(x) d ≥ 0 for all d, i.e.,
∇2f(x) ⪰ 0.

Assume f ∈ C2: (d) ⇒ (a). Fix w, v and set d := v − w. Consider ϕ(α) := f(w + αd) on [0, 1].
By (d), ϕ′′(α) = d⊤∇2f(w + αd) d ≥ 0, so ϕ is convex on [0, 1]. Thus for θ ∈ [0, 1],

f(θw + (1− θ)v) = ϕ(1− θ) ≤ θ ϕ(0) + (1− θ)ϕ(1) = θf(w) + (1− θ)f(v),

the chord test.

Geometric intuition. (a)⇔(b): convexity of f says the straight-line chord of its graph lies above the
graph; in (x, t)-space this is exactly “the epigraph is convex.” (a)⇔(c): for a smooth convex f , every
tangent hyperplane is a global underestimator (supports the epigraph); conversely, if all tangents
lie below the graph, chords lie above it. (a)⇔(d): PSD Hessian means nonnegative curvature in
every direction; along any line, f restricts to a convex univariate function, hence satisfies the chord
test.

Gotcha 2.5 (PSD at a single point is not enough). The condition ∇2f(x⋆) ⪰ 0 at one point is
a local necessary condition for a local minimum, not a global convexity certificate; convexity
via (d) requires ∇2f(x) ⪰ 0 for all x when f ∈ C2.

Examples of convex and nonconvex functions

Example 2.6. Decide convexity and justify briefly:

(a) f(x) = x2 on R (convex).

(b) f(x) = |x| on R (convex, nondifferentiable at 0).

(c) f(x) = x⊤Ax on Rn with A ⪰ 0 (convex by PSD quadratic form).

(d) f(x) = x⊤Ax with A indefinite (nonconvex; saddle directions).

(e) f(x) = (x− 1)(x− 3)(x− 5) (nonconvex; changing curvature).
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(f) f(x) = 1/x on x > 0 (convex on its domain; domain matters).

(g) Jump: f(x) = 1{x≥0} (not convex; not lower semicontinuous).

(h) Extended-value barrier:

f(x) =

{
0 x ∈ [−1, 1],

∞ else.

encodes a hard interval constraint.

It is generally easiest to check convexity of quadratics using the second-order condition (d).
For univariate functions, the chord test (a) is often easiest. The epigraph definition provides a
nice proof that the extended-value barrier is convex: the epigraph is the (unbounded) rectangle
{(x, t) | x ∈ [−1, 1], t ≥ 0}, a convex set.

2.1 Operations preserving convexity of functions

Proposition 2.7 (Closure rules for functions). If f, g : Rn → R are convex, then so are:

(a) cf for c ≥ 0,

(b) x 7→ f(Ax+ b) for affine Ax+ b,

(c) f + g,

(d) max{f, g} (pointwise maximum).

Moreover, the composition f ◦ g is convex if g is convex and f is convex and (elementwise)
nondecreasing. For C2 scalar functions,

(f ◦ g)′′(x) = f ′′(g(x)) (g′(x))2 + f ′(g(x)) g′′(x) ≥ 0.

These rules allow us to build complex convex functions from simple ones, and to prove convexity
of many functions we encounter in practice without resorting to the chord test.

Gotcha 2.8 (Composition pitfalls). If the outer function is convex but decreasing, convexity
may be destroyed (the f ′(g(x)) g′′(x) term can flip sign).

Proof. We give short, self-contained arguments; when convenient we use the epigraph calculus
epi(h) = {(x, t) | t ≥ h(x)}, together with the facts that (i) intersections and affine preimages of
convex sets are convex, and (ii) projections of convex sets are convex.

(a) Positive scaling. For c ≥ 0 and any x, y, θ ∈ [0, 1],

(cf)(θx+ (1− θ)y) = c f(θx+ (1− θ)y) ≤ c
(
θf(x) + (1− θ)f(y)

)
= θ(cf)(x) + (1− θ)(cf)(y).

Equivalently, epi(cf) = {(x, t) | t ≥ cf(x)} is convex because it is the image of epi(f) under the
linear map (x, s) 7→ (x, cs) with c ≥ 0.
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(b) Affine precomposition. Let T (x) = Ax+ b be affine. Using the chord test,

f(T (θx+ (1− θ)y)) = f
(
θT (x) + (1− θ)T (y)

)
≤ θf(T (x)) + (1− θ)f(T (y)).

Epigraphically,
epi(f ◦ T ) = {(x, t) | (T (x), t) ∈ epi(f)}

is the affine preimage of the convex set epi(f), hence convex.

(c) Sum. By the chord test for f and g,

(f + g)(θx+(1− θ)y) ≤ θf(x)+ (1− θ)f(y)+ θg(x)+ (1− θ)g(y) = θ(f + g)(x)+ (1− θ)(f + g)(y).

Epigraphically, one can also write

epi(f + g) = {(x, t) | ∃ s, u : s ≥ f(x), u ≥ g(x), s+ u ≤ t},

a projection of the convex set {(x, s, u, t) | (x, s) ∈ epi(f), (x, u) ∈ epi(g), s+u ≤ t}; hence convex.
(d) Pointwise maximum. For any x, y, θ,

max{f, g}(θx+ (1− θ)y) ≤ max{θf(x) + (1− θ)f(y), θg(x) + (1− θ)g(y)}

≤ θmax{f(x), g(x)}+ (1− θ)max{f(y), g(y)}.

Equivalently, epi(max{f, g}) = epi(f) ∩ epi(g), the intersection of convex sets, hence convex.

(e) Composition with a convex, nondecreasing outer map. Assume g : Rn → R is convex
and f : R → R is convex and nondecreasing. For any x, y, θ,

g(θx+ (1− θ)y) ≤ θg(x) + (1− θ)g(y)

by convexity of g, so by monotonicity of f ,

f
(
g(θx+ (1− θ)y)

)
≤ f

(
θg(x) + (1− θ)g(y)

)
≤ θf(g(x)) + (1− θ)f(g(y)),

the last inequality by convexity of f on R. Thus f ◦ g is convex.

Second-derivative check (scalar C2 case). If g : R → R is convex (g′′ ≥ 0) and f : R → R is
convex and nondecreasing (f ′′ ≥ 0, f ′ ≥ 0), then by the chain rule

(f ◦ g)′′(x) = f ′′(g(x)) (g′(x))2 + f ′(g(x)) g′′(x) ≥ 0,

so f ◦ g is convex.

Jensen’s inequality

Theorem 2.9 (Jensen). If f : Rn → R is convex and X is a random variable, then

f(E[X]) ≤ E[f(X)].

In the discrete case, this is the multi-point chord test for convex combinations.

2.2 Sublevel sets and quasiconvexity
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Definition 2.10 (Sublevel set). For t ∈ R, the sublevel set of f at level t is

St := {x ∈ Rn | f(x) ≤ t }.

Proposition 2.11 (Convex sublevel sets). If f is convex, then St is convex for every t.

Proof. If x, y ∈ St, then by convexity f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) ≤ t.

For an even more elegant proof, first consider the intersection of the epigraph of f with the
halfspace {(x, s) | s ≤ t}, which is convex. Projecting this intersection onto the x-space yields St,
which is therefore convex.

Definition 2.12 (Quasiconvex function). A function f is quasiconvex if all its sublevel sets
are convex.

Quasiconvexity is strictly weaker than convexity: every convex function is quasiconvex, but
not vice versa. For example, f(x) = max{x, 0} is convex, while f(x) = min{x, 0} is quasiconvex
but not convex. One-dimensional quasiconvex functions are precisely those that are monotonic or
unimodal (decreasing then increasing).

Quasiconvexity is still a useful property for optimization, as local minima are still global minima.

Gotcha 2.13 (What you lose when only quasiconvex). Quasiconvexity does not imply Jensen,
global linear underestimators, or a subgradient calculus as rich as for convex functions.

2.3 Supporting hyperplanes for convex sets

Supporting hyperplanes generalize the first-order condition for smooth convex functions to nons-
mooth convex functions and sets. They provide an alternative definition of convexity that forms a
critical building block for convex duality.

Definition 2.14 (Supporting hyperplane). A hyperplane H = {y ∈ Rn | a⊤y = b} supports a
set S at x ∈ S if a⊤x = b and a⊤y ≥ b for all y ∈ S.

A differentiable convex function f has a supporting hyperplane at every point (x, f(x)) of
its graph, given by the tangent plane {(y, t) | t = ∇f(x)⊤(y − x) + f(x)}. More generally, the
epigraph of any convex function has a supporting hyperplane at every boundary point (x, f(x))
with x ∈ relint dom f .

We will state but not prove the following fundamental theorem.

Theorem 2.15 (Existence of supports). Every nonempty convex set has a supporting hyper-
plane at every boundary point.

A partial converse also holds: if a closed set with nonempty interior admits a supporting
hyperplane at every boundary point, then it is convex.
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2.4 Convex functions, epigraphs, and subgradients

Theorem 2.16 (Supporting hyperplanes ⇔ convexity of f). f is convex if and only if, for
every x ∈ relint dom f , the epigraph admits a supporting hyperplane at (x, f(x)). That is, there
exists g ∈ Rn with

f(y) ≥ f(x) + g⊤(y − x) ∀ y.

This theorem generalizes the differentiable first-order condition to nondifferentiable functions,
and gives a new way to assess whether a nondifferentiable function is convex.

Definition 2.17 (Subgradient and subdifferential). A subgradient of f at x is any g satisfying
f(y) ≥ f(x) + g⊤(y − x) for all y; the set of all subgradients is the subdifferential ∂f(x).

Key facts. g is a subgradient ⇐⇒ the affine function y 7→ f(x) + g⊤(y − x) is a global
underestimator of f ; equivalently, (g,−1) supports the epigraph at (x, f(x)). If f is convex and
differentiable at x, then ∂f(x) = {∇f(x)}.

Example 2.18 (Pointwise maximum). Let f = max{f1, f2} with f1, f2 convex and C1. If
f1(x) ̸= f2(x), then f is differentiable at x and ∇f(x) = ∇fi(x) for whichever function i is
largest. If f1(x) = f2(x), then

∂f(x) = conv{∇f1(x),∇f2(x)}.

The kink where the active function switches is precisely where f is nonsmooth and the subgra-
dient is non-unique.

Proposition 2.19 (Subdifferential properties). For any extended-real f ,

∂f(x) = { g | f(y) ≥ f(x) + g⊤(y − x) ∀y }

is a closed, convex (possibly empty) set; ∂f(x) = ∅ if f(x) = ∞. If f is convex, then ∂f(x) ̸= ∅
for x ∈ relint dom f ; if f is convex and differentiable at x, ∂f(x) = {∇f(x)}, and conversely if
∂f(x) = {g}, then f is differentiable at x with ∇f(x) = g.

Notice the subdifferential is set-valued !

Example 2.20 (ℓ1 norm in 1D). For f(x) = |x|,

∂f(x) =


{1}, x > 0,

[−1, 1], x = 0,

{−1}, x < 0.

This is the prototypical nonsmooth convex function; the fan of supporting lines at x = 0 has
slopes in [−1, 1].

10



2.5 Global optimality for convex objectives

Theorem 2.21 (Local ⇒ global). If x⋆ is a local minimizer of a convex function f , then x⋆

is a global minimizer.

Proof. If x⋆ is a local minimizer, there exists ϵ > 0 such that f(x⋆) ≤ f(y) for all y with ∥y−x⋆∥ < ϵ.
For any z, the chord test with y = x⋆ + ϵ(z − x⋆)/∥z − x⋆∥ gives

f(z) ≥ ∥z − x⋆∥
ϵ

f(y) +

(
1− ∥z − x⋆∥

ϵ

)
f(x⋆) ≥ f(x⋆).

Corollary 2.22 (First-order certificate). If f is convex and differentiable and ∇f(x⋆) = 0,
then x⋆ is a global minimizer. In general, 0 ∈ ∂f(x⋆) certifies global optimality for convex
(possibly nonsmooth) f .

Proof. If ∇f(x⋆) = 0, then by the first-order condition for convexity,

f(y) ≥ f(x⋆) +∇f(x⋆)⊤(y − x⋆) = f(x⋆) ∀y,

so x⋆ is a global minimizer. If 0 ∈ ∂f(x⋆), then f(y) ≥ f(x⋆) for all y by the definition of
subgradient.

Why this matters for optimization. For convex f , any stationary point is a global minimizer,
so local optimization methods (e.g., gradient descent) can find (and certify) global solutions.

2.6 Exercises

Exercise. Show that the projection of a polyhedron is a polyhedron, and use this to argue
that projecting a convex feasible region yields a convex feasible region.

Exercise. Prove the composition rule: if g is convex and f is convex and nondecreasing, then
f ◦ g is convex. Give a counterexample when f is convex but decreasing.

Exercise. Compute ∂∥x∥1 at a point x ∈ Rn. (Hint: use separability and the 1D formula for
|x|.)

Exercise. Let f = max{f1, f2} with convex C1 functions f1, f2. Derive ∂f(x) in the cases
f1(x) ̸= f2(x) and f1(x) = f2(x).
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3 Convex optimization

This section transitions from convex analysis (objects and properties) to convex optimization prob-
lems: mathematical programs whose geometry and calculus yield global guarantees, practical stop-
ping criteria, and efficient algorithms.

3.1 What is a convex optimization problem?

Definition 3.1 (Convex optimization problem). An optimization problem is convex if the
feasible set is convex and the epigraph of the objective is convex.

For a problem written in the nonlinear programming (NLP) form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , p,
variable x ∈ Rn,

the problem is convex if and only if

1. the objective f0 and inequality constraint functions are convex with f0, fi convex and the
equality constraints affine.

Maximizing a concave function subject to convex constraints is also a convex optimization problem:
simply minimize the negative of the concave function.

Remark 3.2 (Why convex optimization?). Convex optimization enjoys a relatively complete the-
ory, efficient solvers, and LP-like tools such as duality and stopping conditions. Convexity is an
important analytic tool, as it allows us to reason about global optimality and stability. It is an
important algorithmic tool, as convex problems can be solved reliably and efficiently at scale. It
is also a powerful modeling tool, as many problems can be modeled or approximated as convex
programs, which allows us to leverage the analytic and algorithmic benefits.

Epigraph modeling. Many objectives can be modeled through an auxiliary variable t and an
epigraph constraint:

min
x

f(x) ⇐⇒ min
x,t

t s.t. f(x) ≤ t,

preserving convexity and often simplifying compositions and pointwise maxima.

Gotcha 3.3 (Nonlinear equalities destroy convexity). Only affine equalities preserve convexity
in the NLP view; general nonlinear equalities typically break convexity of the feasible set. For
example, x2 + y2 = 1 describes a nonconvex set (the unit circle).
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