CME 307: Optimization

CME 307 / MS&E 311 / OIT 676

Quiz 1: Practice questions

Fall 2025 Prof. Udell

These questions relate to an LP in standard form

minimize
$$c^T x$$

subject to $Ax = b$
 $x > 0$ (\mathcal{P})

with $A \in \mathbb{R}^{m \times n}$ of rank $m, b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, and m < n. Recall that a basic feasible solution (BFS) is a feasible point x for which there is some $S \subseteq [n]$ with |S| = m so that A_S is invertible, $x_S = A_S^{-1}b$, and $x_{\bar{S}} = 0$.

Exercise. Rewrite the LP

$$\min\{-2x_1 + x_2\}$$
 s.t. $2x_1 + 3x_2 \le 5$, $x_1 \in \mathbb{R}$, $x_2 \ge 0$

in standard form by introducing a slack variable and splitting the free variable. Specify the new decision vector and the resulting (A, b, c).

Exercise. Let $F = \{(x_1, x_2) \mid x_1 + 2x_2 \le 4, x_1 \ge 0, x_2 \ge 0\}$ and x = (0, 2).

- (i) List the active constraints at x.
- (ii) Write the slack form Ax + s = b for the inequality, and give the slack value at x.

Exercise. Let $A = [A_1 \ A_2 \ A_3]$ with $A_1 = (1,0)$, $A_2 = (0,1)$, $A_3 = (1,1)$, and b = (1,2). Decide whether the LP $\{x \ge 0 : Ax = b\}$ is feasible by checking if $b \in \text{cone}(A_1, A_2, A_3)$. If yes, exhibit one nonnegative combination.

Exercise. Using the same A_i as above, note that $b = (2,3)^{\top}$ can be written as $b = A_1 + 2A_2 + A_3$. Find a representation of b using at most m = 2 generators with nonnegative coefficients (as guaranteed by Carathéodory's theorem).

Exercise. Take

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad x \ge 0.$$

List all BFS: give each basis $S \subset \{1, 2, 3\}$ with |S| = 2 that yields $x_S = A_S^{-1}b \ge 0$, and the corresponding x.

Exercise. Let x be a BFS of $F = \{x \mid Ax = b, x \ge 0\}$ with basis S. Construct a cost vector c for which x is the unique minimizer of

$$\min\{c^Tz\mid z\in F\},$$

thereby proving that every BFS is a vertex.

Exercise. Consider

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad c = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}.$$

At the BFS with basis $S = \{1, 2\}$:

- (i) Write the basic direction $d^{(3)}$ for entering variable j=3.
- (ii) Compute the reduced cost $\bar{c}_3 = c_3 c_S^T A_S^{-1} A_3$ and decide if moving along $d^{(3)}$ improves the objective.
- (iii) Find the maximal $\theta > 0$ keeping $x + \theta d^{(3)} \ge 0$ and name a valid new basis after the pivot.

Exercise. Define the reduced cost \bar{c}_j for $j \notin S$ and prove the reduced cost optimality test: if all reduced costs $\bar{c}_j \geq 0$ for $j \notin S$, then the BFS x is optimal. Explain why the proof fails if the BFS is degenerate.

Exercise. Consider the LP

minimize
$$x_1 - x_2$$

subject to $x_1 + 2x_2 \le 4$
 $2x_1 + x_2 \le 5$
 $x_1, x_2 \ge 0$

- (a) List all BFS by choosing pairs of active constraints.
- (b) For each BFS, compute the objective value.
- (c) Identify the optimal BFS.
- (d) Verify optimality using reduced costs.

Exercise. Consider the feasible set $F = \{x : Ax = b, x \ge 0\}$ of the LP above.

- (A) Starting from a nondegenerate BFS x (with $x_S > 0$ for m active variables S), what conditions must a vector d satisfy so that $x + \theta d$ is in the feasible set for some $\theta > 0$?
- (B) Find a basis for the set of feasible directions d. (Hint: suppose $d_j = 1$ for some $j \notin S$, and figure out the other components of d.)

Exercise. Consider the augmented LP we introduced to help find an initial BFS:

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T z \\ \text{subject to} & Ax + Dz = b \\ & x, z \geq 0 \end{array}$$

where D is diagonal with $D_{ii} = 1$ if $b_i \ge 0$ and $D_{ii} = -1$ if $b_i < 0$.

- (A) What conditions must a BFS (x, z) for this problem satisfy?
- (B) Write down a BFS for this problem.
- (C) If the original LP is feasible, what can you say about the optimal value of this problem? Give a brief justification.