

Quiz 3: Practice questions

Fall 2025

Prof. Udell

Exercise. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be $f(x) = x^4 - 2x^2$.

- (i) Find all critical points of f .
- (ii) Use the second derivative test to classify each critical point as a local minimizer, local maximizer, or saddle/inflection.
- (iii) Determine the global minimizer(s) of f and the global minimum value.

Exercise. Consider $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $f(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2 - 3x_1$.

- (i) Write the first-order optimality condition $\nabla f(x) = 0$.
- (ii) Solve for the critical point(s).
- (iii) Compute the Hessian and use the second-order condition to classify each critical point. Is any critical point a global minimizer?

Exercise. Let $f(x_1, x_2) = x_1^2 - x_2^2$.

- (i) Verify that $\nabla f(0, 0) = 0$.
- (ii) Compute the Hessian and determine its eigenvalues at $(0, 0)$. Is it positive (semi)definite?
- (iii) Show that $(0, 0)$ is not a local minimizer by exhibiting a direction along which f decreases.

Exercise. Consider the sets in \mathbb{R}^2

$$S_1 = \{(x_1, x_2) \mid x_1 + 2x_2 \leq 4, ; x_1 \geq 0, ; x_2 \geq 0\}, \quad S_2 = \{(x_1, x_2) \mid x_1 x_2 \geq 1, ; x_1 > 0, ; x_2 > 0\},$$

$$S_3 = \{x \in \mathbb{R}^2 \mid \|x\|_2 \leq 1\}.$$

- (i) Prove that S_1 is convex.
- (ii) Decide whether S_2 is convex. Justify your answer by the definition (chords) or with a counterexample.
- (iii) Prove that S_3 is convex.

Exercise. Define the functions on \mathbb{R} :

$$f(x) = \max 2x + 1, -x + 3, \quad g(x) = e^x, \quad h(x) = x^3.$$

- (i) Prove f is convex using operations that preserve convexity.
- (ii) Prove g is convex by an appropriate test.
- (iii) Determine whether h is convex on \mathbb{R} ; justify your answer.

Exercise. Let $f : \mathbb{R}^m \rightarrow \mathbb{R}$ be convex and let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

- (i) Prove that the function $x \mapsto f(Ax + b)$ is convex (use the chord definition).
- (ii) Use (i) to show that $x \mapsto \|Ax - b\|_2$ is convex.
- (iii) Prove that if f and g are convex, then $f + g$ is convex.

Exercise. (Jensen) Let f be convex and X a random variable.

- (i) State Jensen's inequality.
- (ii) Let X be uniform on $[0, 2]$ and $f(t) = t^2$. Compute $f(\mathbb{E}[X])$ and $\mathbb{E}[f(X)]$ and verify Jensen.
- (iii) Let X be uniform on $[0, 1]$ and $f(t) = e^t$. Compute $e^{\mathbb{E}[X]}$ and $\mathbb{E}[e^X]$ and verify Jensen.

Exercise. (Subgradients)

- (i) Consider $f : \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x) = |x|$. Compute the subdifferential ∂f at $x = 0$.
- (ii) For $f(x) = |x|_1$ on \mathbb{R}^3 , give one subgradient $g \in \partial f(x)$ at $x = (1, 0, -2)$.
- (iii) Let $f(x) = \max a_1^\top x + b_1, a_2^\top x + b_2$. Describe $\partial f(x)$ when the first affine function is the unique maximizer at x , and when both are maximizers.

Exercise. (Certifying global optimality via first order for convex f)

- (i) Prove: If $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex and differentiable, and $\nabla f(x^\star) = 0$, then x^\star is a global minimizer.
- (ii) Let $f(x) = \frac{1}{2}x^\top Qx + q^\top x$ with $Q \succeq 0$. Characterize the set of minimizers and give a condition for uniqueness.
- (iii) Apply (ii) to $Q = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ and $q = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$ to find a minimizer.

Exercise. (Certifying global optimality via subgradient) Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be $f(x) = |x| + (x-1)^2$.

- (i) Compute $\partial f(x)$ for $x < 0$, for $x = 0$, and for $x > 0$.
- (ii) Find x^* such that $0 \in \partial f(x^*)$.
- (iii) Argue that x^* is a global minimizer of f .