

## Practice Problems

### Lagrangians, Duals, and Slater's Condition

For each of the following primal optimization problems, address the following issues:

- (a) Write the Lagrangian;
- (b) Form the dual function  $g(\lambda)$  and simplify it as much as you can;
- (c) Write the dual problem (including its feasible set);
- (d) Is the primal a convex optimization problem?
- (e) Does Slater's condition hold for the primal?
- (f) Does strong duality hold?

$$(P1) \quad \begin{aligned} \min_{x \in \mathbb{R}^n} \quad & \frac{1}{2} \|x\|_2^2 \\ \text{s.t.} \quad & Ax \geq b \quad (A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m) \end{aligned}$$

$$(P2) \quad \begin{aligned} \min_{x \in \mathbb{R}} \quad & -x^2 \\ \text{s.t.} \quad & x^2 \leq 1. \end{aligned}$$

$$(P3) \quad \begin{aligned} \min_{x \in \mathbb{R}^n} \quad & \sum_{i=1}^n x_i \log x_i \\ \text{s.t.} \quad & Ax \leq b \quad (x \geq 0 \text{ is included among these}) \\ & 1^T x = 1 \end{aligned}$$

$$(P4) \quad \begin{aligned} \min_{x \in \mathbb{R}} \quad & x \\ \text{s.t.} \quad & x^2 \geq 0 \end{aligned}$$

$$(P5) \quad \begin{aligned} \min_{x,y \in \mathbb{R}} \quad & e^x \\ \text{s.t.} \quad & x^4/y \leq 1 \end{aligned}$$

$$(P6) \quad \begin{aligned} \min_{x \in \mathbb{R}^n} \quad & \frac{1}{2} \|x\|_2^2 \\ \text{s.t.} \quad & \|Ax - b\|_2 \leq r, \end{aligned}$$

$$(P7) \quad \begin{aligned} \min_{x \in \mathbb{R}^n} \quad & \sum_{i=1}^n x_i \log x_i \\ \text{s.t.} \quad & Ax = b \\ & x \geq 0 \end{aligned}$$

# 1 KKT Conditions and Constraint Qualification

For each of the following optimization problems, address the following issues:

- (a) Write down the first-order necessary KKT optimality conditions.
- (b) Do the Slater constraint qualification conditions hold?
- (c) Would these KKT conditions characterize a locally optimal point or the globally optimal point for the problem?

$$(P1) \quad \begin{aligned} \min_{x \in \mathbb{R}^2} \quad & \frac{1}{2}(x_1^2 + x_2^2) \\ \text{s.t.} \quad & x_1 + x_2 = 1 \\ & x \geq 0 \end{aligned}$$

$$(P2) \quad \begin{aligned} \min_{x \in \mathbb{R}^2} \quad & x_1^4 + x_2^4 - 3x_1^2 \\ \text{s.t.} \quad & x_1^2 + x_2^2 \leq 1. \end{aligned}$$

$$(P3) \quad \begin{aligned} \min_{x \in \mathbb{R}} \quad & x \\ \text{s.t.} \quad & x^2 \leq 0. \end{aligned}$$

$$(P4) \quad \begin{aligned} \min_{x \in \mathbb{R}^2} \quad & x_1 \\ \text{s.t.} \quad & x \geq 0 \\ & x_1 + x_2 \geq 1. \end{aligned}$$

$$(P5) \quad \begin{aligned} \min_{x \in \mathbb{R}^2} \quad & x_1 \\ \text{s.t.} \quad & x_1^2 + x_2^2 = 2. \end{aligned}$$

$$(P6) \quad \begin{aligned} \min_{x \in \mathbb{R}^2} \quad & (x_1 - 1)^2 + (x_2 + 2)^2 \\ \text{s.t.} \quad & x_1 \geq 0 \\ & x_2 + 3 \geq 0. \end{aligned}$$