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Quiz 5: Practice questions

Fall 2025 Prof. Udell

Exercise. Let f : Rn → R be L-smooth. Show that for any x and any t ∈ (0, 1/L], the gradient
step x+ = x− t∇f(x) satisfies f(x+) ≤ f(x)− t

2 |∇f(x)|
2 by using the quadratic upper bound

for L-smooth functions.

Exercise. Armijo backtracking terminates. Let f be L-smooth, fix c ∈ (0, 1) and β ∈
(0, 1). Starting from t0 = 1, repeatedly set t← βt until the Armijo condition f(x− t∇f(x)) ≤
f(x) − c, t|∇f(x)|2 holds. Show Armijo holds whenever 0 < t ≤ 2(1−c)

L , and deduce an upper
bound on the number of backtracks when starting at t0 = 1.

Exercise. Exact line search on a quadratic. Let f(x) = 1
2x

⊤Ax − b⊤x with A ⪰ 0. If

g = ∇f(x) = Ax − b and p = −g, compute t⋆ = argmint≥0 f(x + tp) and show t⋆ =
g⊤g

g⊤Ag
(assuming g ̸= 0 and g⊤Ag > 0).

Exercise. Upper-bound viewpoint. Assume f is L-smooth. Show that the minimizer of
my(z) = f(y)+∇f(y)⊤(z− y)+ L

2 |z− y|2 is z⋆ = y− 1
L∇f(y). Conclude gradient descent with

stepsize 1/L arises by minimizing this upper model at each iterate.

Exercise. Quadratic loss. For f(x) = |Ax − b|2, compute ∇f and ∇2f and prove L-
smoothness with L = 2λmax(A

⊤A). When is f strongly convex?

Exercise. Logistic loss. For f(x) =
∑m

i=1 log!
(
1 + exp(bia

⊤
i x)

)
, show ∇2f(x) =

∑
i σi(1 −

σi)aia
⊤
i with σi =

1
1+exp(−bia⊤i x)

, deduce L-smoothness with L ≤ 1
4 , λmax(A

⊤A), and state a

condition under which f is strongly convex on a compact domain.

Exercise. Sanity check in Rn. For f(x) = 1
2 |x|

2, gradient descent gives xk+1 = (1 − t)xk.
Determine precisely for which t > 0 the iterates converge and give the linear rate as a function
of t.

Exercise. For a differentiable function f : Rn → R, explain geometrically why the negative
gradient −∇f(x) gives the direction of steepest decrease of f at x. You may reason using the
first-order Taylor approximation or by considering the directional derivative.
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Exercise. In gradient descent,

x(k+1) = x(k) − t∇f(x(k)).

Suppose x represents a position vector with physical units of meters, and f(x) represents energy
(joules).

(a) What are the units of ∇f(x)? Recall the definition of the gradient.

(b) What are the units of the step size t?

(c) How does this affect your intuition about why it is difficult to choose a good step size in
practice?

Exercise. Consider f(x) = 1
2x

TAx for A ⪰ 0. Show that gradient descent updates each
eigen-direction of A independently. If the eigenvalues of A lie in [µ,L], how does this explain
the convergence rate bound in the previous exercise?

Exercise. For an L-smooth function f , derive the gradient descent update rule by minimizing
the quadratic upper bound

f(y) ≤ f(x) +∇f(x)T (y − x) + L
2 ∥y − x∥2.

Conceptually, what are we minimizing at each step, and why does this guarantee descent when
t ≤ 1/L?

Exercise. You apply gradient descent to minimize a smooth loss f(w) in machine learning.
During training you observe oscillations: the objective decreases for a few steps, then increases.
What does this behavior suggest about your current step size? Explain how you could adjust
it using ideas from smoothness or the Armijo rule.
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