CME 307: Optimization CME 307 / MS&E 311 / OIT 676

Quiz 5: Practice questions
Fall 2025 Prof. Udell

Exercise. Let f : R" — R be L-smooth. Show that for any = and any ¢t € (0,1/L], the gradient
step T = x — tV f(z) satisfies f(z1) < f(z) — £|V f(x)|* by using the quadratic upper bound
for L-smooth functions.

Exercise. Armijo backtracking terminates. Let f be L-smooth, fix ¢ € (0,1) and g €
(0,1). Starting from ¢y = 1, repeatedly set t «— [t until the Armijo condition f(x —tV f(z)) <
f(z) — ¢,t|Vf(z)|> holds. Show Armijo holds whenever 0 < ¢ < 2(150), and deduce an upper
bound on the number of backtracks when starting at to = 1.

Exercise. Exact line search on a quadratic. Let f(z) = %mTAx —b'x with A = 0. If
9'g
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g = Vf(z) = Az — b and p = —g, compute t* = arg mins>¢ f(z + tp) and show t* =
(assuming g # 0 and g' Ag > 0).

Exercise. Upper-bound viewpoint. Assume f is L-smooth. Show that the minimizer of
my(2) = f)+ V)T (z—y)+ %]z —y|? is 2* = y— LV f(y). Conclude gradient descent with
stepsize 1/L arises by minimizing this upper model at each iterate.

Exercise. Quadratic loss. For f(z) = |Az — b|?, compute Vf and V2f and prove L-
smoothness with L = 2\ pax (AT A). When is f strongly convex?

Exercise. Logistic loss. For f(z) = Y1, log!(1 + exp(bia; z)), show V2f(z) = >, 04(1 —

Ul-)aiaiT with o; = m, deduce L-smoothness with L < }l,)\maX(ATA), and state a

condition under which f is strongly convex on a compact domain.

Exercise. Sanity check in R". For f(z) = 3|z|?, gradient descent gives z**! = (1 — ¢)a*.

Determine precisely for which ¢ > 0 the iterates converge and give the linear rate as a function
of t.

Exercise. For a differentiable function f : R™ — R, explain geometrically why the negative
gradient —V f(x) gives the direction of steepest decrease of f at z. You may reason using the
first-order Taylor approximation or by considering the directional derivative.




Exercise. In gradient descent,
g+ = g*) _ v f (),

Suppose z represents a position vector with physical units of meters, and f(z) represents energy
(joules).

(a) What are the units of V f(z)? Recall the definition of the gradient.
(b) What are the units of the step size t?

(c) How does this affect your intuition about why it is difficult to choose a good step size in
practice?

Exercise. Consider f(z) = %:L“TA{E for A = 0. Show that gradient descent updates each
eigen-direction of A independently. If the eigenvalues of A lie in [u, L], how does this explain
the convergence rate bound in the previous exercise?

Exercise. For an L-smooth function f, derive the gradient descent update rule by minimizing
the quadratic upper bound

fy) < f@) + V@) (y —2) + Flly — =]

Conceptually, what are we minimizing at each step, and why does this guarantee descent when
t<1/L?

Exercise. You apply gradient descent to minimize a smooth loss f(w) in machine learning.
During training you observe oscillations: the objective decreases for a few steps, then increases.
What does this behavior suggest about your current step size? Explain how you could adjust
it using ideas from smoothness or the Armijo rule.




